At methane seeps worldwide, syntrophic anaerobic methane-oxidizing archaea and sulfate-reducing bacteria promote carbonate precipitation and rock formation, acting as methane and carbon sinks. Although maintenance of anaerobic oxidation of methane (AOM) within seep carbonates has been documented, its reactivation upon methane exposure remains uncertain. Surface-associated microbes may metabolize sulfide from AOM, maintain carbonate anoxia, contribute to carbonate dissolution, and support higher trophic levels; however, these communities are poorly described.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) form syntrophic partnerships in marine sediments to consume greenhouse gas methane. While direct interspecies electron transport is proposed to enable ANME/SRB symbiosis, its electrochemical properties remain uncharacterized. Here, using sediment-free enrichment cultures, we measured the electron transport capabilities of marine consortia under physiological conditions.
View Article and Find Full Text PDFThis protocol set focuses on the preparation of the BD FACSAria II/III/Fusion, a cuvette-based cell sorting system commonly found in shared resource settings, to sort submicron samples, including but not limited to virus-like particles (VLPs) and bacteria. This is meant to serve as a proven workflow for staff in general shared resource laboratories (SRL) and individual labs. It is also useful for labs purchasing cuvette-based sorters with similar fluidic paths to the FACSAria Fusion from BD Biosciences, such as the BD FACSSymphony S6 and BD FACSDiscover S8, as well as for specialized SRLs that will need to move away from Influx and MoFlo platforms that are approaching end of life.
View Article and Find Full Text PDFDespite their large environmental impact and multiple independent emergences, the processes leading to the evolution of anaerobic methanotrophic archaea (ANME) remain unclear. This work uses comparative metagenomics of a recently evolved but understudied ANME group, " Methanovorans" (ANME-3), to identify evolutionary processes and innovations at work in ANME, which may be obscured in earlier evolved lineages. We identified horizontal transfer of homologs and convergent evolution in carbon and energy metabolic genes as potential early steps in evolution.
View Article and Find Full Text PDFMethane seeps harbor uncharacterized animal-microbe symbioses with unique nutritional strategies. Three undescribed sea spider species (family Ammotheidae; genus ) endemic to methane seeps were found along the eastern Pacific margin, from California to Alaska, hosting diverse methane- and methanol-oxidizing bacteria on their exoskeleton. δC tissue isotope values of in situ specimens corroborated methane assimilation (-45‰, on average).
View Article and Find Full Text PDFIdentification of both prokaryotic and eukaryotic microorganisms in environmental samples is currently challenged by the need for additional sequencing to obtain separate 16S and 18S ribosomal RNA (rRNA) amplicons or the constraints imposed by "universal" primers. Organellar 16S rRNA sequences are amplified and sequenced along with prokaryote 16S rRNA and provide an alternative method to identify eukaryotic microorganisms. CABO-16S combines bacterial and archaeal sequences from the SILVA database with 16S rRNA sequences of plastids and other organelles from the PR2 database to enable identification of all 16S rRNA sequences.
View Article and Find Full Text PDFMicrobes inhabiting complex porous microenvironments in sediments and aquifers catalyze reactions that are critical to global biogeochemical cycles and ecosystem health. However, the opacity and complexity of porous sediment and rock matrices have considerably hindered the study of microbial processes occurring within these habitats. Here, we generated microbially compatible, optically transparent mineral scaffolds to visualize and investigate microbial colonization and activities occurring in these environments, in laboratory settings and in situ.
View Article and Find Full Text PDFThe microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species.
View Article and Find Full Text PDFDiscovering new deep hydrothermal vent systems is one of the biggest challenges in ocean exploration. They are a unique window to elucidate the physical, geochemical, and biological processes that occur on the seafloor and are involved in the evolution of life on Earth. In this study, we present a molecular analysis of the microbial composition within the newly discovered hydrothermal vent field, , situated in the Southern Pescadero Basin within the Gulf of California.
View Article and Find Full Text PDFAuthigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen .
View Article and Find Full Text PDFSulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota.
View Article and Find Full Text PDFGranular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified.
View Article and Find Full Text PDFNat Microbiol
February 2023
mBio
December 2022
Some contain intracytoplasmic membranes (ICMs) and proteins homologous to those responsible for the mitochondrial cristae, an observation which has given rise to the hypothesis that the endosymbiont had already evolved cristae-like structures and functions. However, our knowledge of microbial fine structure is still limited, leaving open the possibility of structurally homologous ICMs outside the . Here, we report on the detailed characterization of lamellar cristae-like ICMs in environmental sulfate-reducing that form syntrophic partnerships with anaerobic methane-oxidizing (ANME) archaea.
View Article and Find Full Text PDFAlkanes are saturated apolar hydrocarbons that range from their simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates.
View Article and Find Full Text PDFBiogeochemical cycling of sulfur is relatively understudied in terrestrial environments compared to marine environments. However, the comparative ease of access, observation, and sampling of terrestrial settings can expand our understanding of organisms and processes important in the modern sulfur cycle. Furthermore, these sites may allow for the discovery of useful process analogs for ancient sulfur-metabolizing microbial communities at times in Earth's past when atmospheric O concentrations were lower and sulfide was more prevalent in Earth surface environments.
View Article and Find Full Text PDFFacultative multicellular behaviors expand the metabolic capacity and physiological resilience of bacteria. Despite their ubiquity in nature, we lack an understanding of how these behaviors emerge from cellular-scale phenomena. Here, we show how the coupling between growth and resource gradient formation leads to the emergence of multicellular lifecycles in a marine bacterium.
View Article and Find Full Text PDFAnaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. Fsr (Fsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. FsrI reduces sulfite to sulfide with reduced F (FH), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition.
View Article and Find Full Text PDFAmong the earliest consequences of climate change are extreme weather and rising sea levels-two challenges to which coastal environments are particularly vulnerable. Often found in coastal settings are microbial mats-complex, stratified microbial ecosystems that drive massive nutrient fluxes through biogeochemical cycles and have been important constituents of Earth's biosphere for eons. Little Ambergris Cay, in the Turks and Caicos Islands, supports extensive mats that vary sharply with relative water level.
View Article and Find Full Text PDFSyntrophic consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) consume large amounts of methane and serve as the foundational microorganisms in marine methane seeps. Despite their importance in the carbon cycle, research on the physiology of ANME-SRB consortia has been hampered by the slow growth and complex physicochemical environment the consortia inhabit. Here, we report successful sediment-free enrichment of ANME-SRB consortia from deep-sea methane seep sediments in the Santa Monica Basin, California.
View Article and Find Full Text PDFHydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those currently known, showing the microbial community in Auka hydrothermal sediments is highly diverse.
View Article and Find Full Text PDF"Fungi on Mars!": a popular news heading that piques public interest and makes scientists' blood boil. While such a statement is laden with misinformation and light on evidence, the search for past and present extraterrestrial life is an ongoing scientific effort. Moreover, it is one that is increasingly gaining momentum with the recent collection of martian rock cores from Jezero Crater by NASA's Perseverance rover.
View Article and Find Full Text PDFEukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes.
View Article and Find Full Text PDFThe anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia.
View Article and Find Full Text PDF