Virtual cells are an emerging frontier at the intersection of artificial intelligence and biology. A key goal of these cell state models is predicting cellular responses to perturbations. The Virtual Cell Challenge is being established to catalyze progress toward this goal.
View Article and Find Full Text PDFDiet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured in vitro from human stool to develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Among these communities, membership was largely determined by the donor stool, whereas relative abundances were determined by the supplemental carbon source.
View Article and Find Full Text PDFBackground: Bacteria use invertible genetic elements known as invertons to generate heterogeneity among a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging.
View Article and Find Full Text PDFPhotosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets.
View Article and Find Full Text PDFHuman immune systems are highly variable, with most variation attributable to non-genetic sources. The gut microbiome crucially shapes the immune system; however, its relationship with the baseline immune states of healthy humans remains incompletely understood. Therefore, we performed multi-omic profiling of 110 healthy participants through the ImmunoMicrobiome study.
View Article and Find Full Text PDFMotivation: The study of bacterial genome dynamics is vital for understanding the mechanisms underlying microbial adaptation, growth, and their impact on host phenotype. Structural variants (SVs), genomic alterations of 50 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to the absence of clear reference genomes and the presence of mixed strains.
View Article and Find Full Text PDFBacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of clear reference genomes and presence of mixed strains.
View Article and Find Full Text PDFMicrobiol Resour Announc
March 2024
sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California.
View Article and Find Full Text PDFENPP1 expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer STING pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single cell RNA-seq (scRNA-seq), we show that ENPP1 overexpression drives primary breast tumor growth and metastasis by synergistically dampening extracellular cGAMP-STING mediated antitumoral immunity and activating immunosuppressive extracellular adenosine (eADO) signaling.
View Article and Find Full Text PDFMicrobial community function depends on both taxonomic composition and spatial organization. While composition of the human gut microbiome has been deeply characterized, less is known about the organization of microbes between regions such as lumen and mucosa and the microbial genes regulating this organization. Using a defined 117 strain community for which we generate high-quality genome assemblies, we model mucosa/lumen organization with in vitro cultures incorporating mucin hydrogel carriers as surfaces for bacterial attachment.
View Article and Find Full Text PDFDiet can impact host health through changes to the gut microbiota, yet we lack mechanistic understanding linking nutrient availability and microbiota composition. Here, we use thousands of microbial communities cultured from human feces to uncover simple assembly rules and develop a predictive model of community composition upon addition of single nutrients from central carbon metabolism to a complex medium. Community membership was largely determined by the donor feces, whereas relative abundances were determined by the supplemental carbon source.
View Article and Find Full Text PDFBackground: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development.
Results: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community.
Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1).
View Article and Find Full Text PDFInfant microbiome assembly has been intensely studied in infants from industrialized nations, but little is known about this process in nonindustrialized populations. We deeply sequenced infant stool samples from the Hadza hunter-gatherers of Tanzania and analyzed them in a global meta-analysis. Infant microbiomes develop along lifestyle-associated trajectories, with more than 20% of genomes detected in the Hadza infant gut representing novel species.
View Article and Find Full Text PDFGut microbiota metabolism of dietary compounds generates a vast array of microbiome-dependent metabolites (MDMs), which are highly variable between individuals. The uremic MDMs (uMDMs) phenylacetylglutamine (PAG), p-cresol sulfate (PCS), and indoxyl sulfate (IS) accumulate during renal failure and are associated with poor outcomes. Targeted dietary interventions may reduce toxic MDM generation; however, it is unclear if inter-individual differences in diet or gut microbiome dominantly contribute to MDM variance.
View Article and Find Full Text PDFHydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those currently known, showing the microbial community in Auka hydrothermal sediments is highly diverse.
View Article and Find Full Text PDFGut inflammation directly impacts the growth and stability of commensal gut microbes and can lead to long-lasting changes in microbiota composition that can prolong or exacerbate disease states. While mouse models are used extensively to investigate the interplay between microbes and the inflamed state, the paucity of cultured mouse gut microbes has hindered efforts to determine causal relationships. To address this issue, we are assembling the Collection of Inflammation-Associated Mouse Intestinal Bacteria (CIAMIB).
View Article and Find Full Text PDFEfforts to probe the role of the gut microbiota in disease would benefit from a system in which patient-derived bacterial communities can be studied at scale. We addressed this by validating a strategy to propagate phylogenetically complex, diverse, stable, and highly reproducible stool-derived communities in vitro. We generated hundreds of in vitro communities cultured from diverse stool samples in various media; certain media generally preserved inoculum composition, and inocula from different subjects yielded source-specific community compositions.
View Article and Find Full Text PDFMechanistic insights into the role of the human microbiome in the predisposition to and treatment of disease are limited by the lack of methods to precisely add or remove microbial strains or genes from complex communities. Here, we demonstrate that engineered bacteriophage M13 can be used to deliver DNA to Escherichia coli within the mouse gastrointestinal (GI) tract. Delivery of a programmable exogenous CRISPR-Cas9 system enables the strain-specific depletion of fluorescently marked isogenic strains during competitive colonization and genomic deletions that encompass the target gene in mice colonized with a single strain.
View Article and Find Full Text PDFCell Host Microbe
September 2021
Due to limitations on high-resolution strain tracking, selection dynamics during gut microbiota colonization and transmission between hosts remain mostly mysterious. Here, we introduced hundreds of barcoded Escherichia coli strains into germ-free mice and quantified strain-level dynamics and metagenomic changes. Mutations in genes involved in motility and metabolite utilization are reproducibly selected within days.
View Article and Find Full Text PDFDiet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects.
View Article and Find Full Text PDFBackground: Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context.
View Article and Find Full Text PDF