Publications by authors named "Maha Rahim"

Human immune systems are highly variable, with most variation attributable to non-genetic sources. The gut microbiome crucially shapes the immune system; however, its relationship with the baseline immune states of healthy humans remains incompletely understood. Therefore, we performed multi-omic profiling of 110 healthy participants through the ImmunoMicrobiome study.

View Article and Find Full Text PDF
Article Synopsis
  • Tissues are made up of units that can be studied at various scales, and new tech helps researchers analyze their structure and function in-depth.
  • The article introduces a method called spatial cellular graph partitioning (SCGP) for automatically annotating tissue structures without manual input, making it more efficient.
  • SCGP, along with its reference-query extension, shows strong accuracy in identifying tissue structures and offers valuable insights into diseases like diabetic kidney disease and skin disorders.
View Article and Find Full Text PDF

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a treatment blocking a signal called IL-23 helps people with psoriasis, a skin disease.
  • They found that patients who improved had changes in certain immune cells, while those who didn’t improve still showed signs of being sick.
  • The research suggests that for some patients, the treatment needs to be continued because their immune system might not fully recover.
View Article and Find Full Text PDF

The aim of this present record-based retrospective study was to investigate the influence of the crown-implant ratio (CIR) and implant inclination in relation to the occlusal plane on the marginal bone loss (MBL) around dental implants supporting single crowns in the posterior region of the jaws. All the cases of implant-supported single crowns in the premolar and molar regions were initially considered for inclusion. Only implants not lost, with baseline radiographs taken within 12 months after implant placement and with a minimum of 36 months of radiological follow-up, were considered for the analysis of MBL.

View Article and Find Full Text PDF

CD8 T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8 T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined.

View Article and Find Full Text PDF

The excited-state lifetime is an intrinsic property of fluorescent molecules that can be leveraged for multiplexed imaging. An advantage of fluorescence lifetime-based multiplexing is that signals from multiple probes can be gathered simultaneously, whereas traditional spectral fluorescence imaging typically requires multiple images at different excitation and emission wavelengths. Additionally, lifetime and spectra could both be utilized to expand the multiplexing capacity of fluorescence.

View Article and Find Full Text PDF

Single cell analysis methods are increasingly being utilized to investigate how individual cells process information and respond to diverse stimuli. Soluble proteins play a critical role in controlling cell populations and tissues, but directly monitoring secretion is technically challenging. Microfabricated well arrays have been developed to assess secretion at the single cell level, but these systems are limited by low detection sensitivity.

View Article and Find Full Text PDF

The targeted delivery of nanoparticle carriers holds tremendous potential to transform the detection and treatment of diseases. A major attribute of nanoparticles is the ability to form multiple bonds with target cells, which greatly improves the adhesion strength. However, the multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic perspective.

View Article and Find Full Text PDF

Secreted proteins play a major role in orchestrating the response of cell populations. However, a quantitative understanding of the dynamic changes in protein secretion in response to microenvironmental cues at the single cell level remains elusive. Measurements taken using traditional molecular techniques typically require bulk cultures, and therefore cannot capture the diversity within cell populations.

View Article and Find Full Text PDF

The bioorthogonal cycloaddition reaction between tetrazine and trans-cyclooctene (TCO) is rapidly growing in use for molecular imaging and cell-based diagnostics. We have surprisingly uncovered that the majority of TCOs conjugated to monoclonal antibodies using standard amine-coupling procedures are nonreactive. We show that antibody-bound TCOs are not inactivated by trans-cis isomerization and that the bulky cycloaddition reaction is not sterically hindered.

View Article and Find Full Text PDF

Local delivery of DNA through a hydrogel scaffold would increase the applicability of gene therapy in tissue regeneration and cancer therapy. However, the delivery of DNA/cationic polymer nanoparticles (polyplexes) using hydrogels is challenging due to the aggregation and inactivation of polyplexes during their incorporation into hydrogel scaffolds. We developed a novel process (termed caged nanoparticle encapsulation or CnE) to load concentrated and unaggregated non-viral gene delivery nanoparticles into various hydrogels.

View Article and Find Full Text PDF