Light and CO assimilation activate the target of rapamycin (TOR) kinase in photosynthetic cells, but how these signals are transmitted to TOR is unknown. Using the green alga as a model system, we identified dihydroxyacetone phosphate (DHAP) as the key metabolite regulating TOR in response to carbon and light cues. Metabolomic analyses of synchronized cells revealed that DHAP levels change more than any other metabolite between dark- and light-grown cells and that the addition of the DHAP precursor, dihydroxyacetone (DHA), was sufficient to activate TOR in the dark.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2025
The cnidarian-dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (: "Aiptasia") with either its native symbiont or one of three non-native symbionts: , and . We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation.
View Article and Find Full Text PDFWe examined the effects of symbiont identity and heat stress on the host metabolome and proteome in the cnidarian-dinoflagellate symbiosis. Exaiptasia diaphana ('Aiptasia') was inoculated with its homologous (i.e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFPhotosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets.
View Article and Find Full Text PDFOxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2).
View Article and Find Full Text PDFPhotosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga ; information on other algae and plants is provided to add depth and nuance to the discussion.
View Article and Find Full Text PDFDynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO conditions; this compartmentalization is a component of the CO Concentrating Mechanism (CCM), which facilitates photosynthetic CO fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO limitation, although a role for this reorganization in CCM function remains unclear.
View Article and Find Full Text PDFMicrobial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium Synechococcus OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph Chloroflexus MS-CIW-1 (Chfl MS-1).
View Article and Find Full Text PDFCellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterized proteomic changes in the native symbiont Breviolum minutum during colonization of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii.
View Article and Find Full Text PDFEnviron Microbiol Rep
June 2024
The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore.
View Article and Find Full Text PDFBackground: In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools.
View Article and Find Full Text PDFDinoflagellates are ecologically important and essential to corals and other cnidarians as phytosymbionts, but their photosystems had been underexplored. Recently, photosystem I (PSI) of dinoflagellate sp. was structurally characterized using cryo-Electron Microscopy (cryo-EM).
View Article and Find Full Text PDFDynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO conditions; this compartmentalization appears to be a component of the CO Concentrating Mechanism (CCM), which facilitates photosynthetic CO fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO limiting conditions, although a role for this reorganization in CCM function remains unclear.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2024
Coral growth depends on the partnership between the animal hosts and their intracellular, photosynthetic dinoflagellate symbionts. In this study, we used the sea anemone , a laboratory model for coral biology, to investigate the poorly understood mechanisms that mediate symbiosis establishment and maintenance. We found that initial colonization of both adult polyps and larvae by a compatible algal strain was more effective when the algae were able to photosynthesize and that the long-term maintenance of the symbiosis also depended on photosynthesis.
View Article and Find Full Text PDFDinoflagellate genomes often are very large and difficult to assemble, which has until recently precluded their analysis with modern functional genomic tools. Here, we present a protocol for mapping three-dimensional (3D) genome organization in dinoflagellates and using it for scaffolding their genome assemblies. We describe steps for crosslinking, nuclear lysis, denaturation, restriction digest, ligation, and DNA shearing and purification.
View Article and Find Full Text PDFOxygen (O), a dominant element in the atmosphere and essential for most life on Earth, is produced by the photosynthetic oxidation of water. However, metabolic activity can cause accumulation of reactive O species (ROS) and severe cell damage. To identify and characterize mechanisms enabling cells to cope with ROS, we performed a high-throughput O sensitivity screen on a genome-wide insertional mutant library of the unicellular alga .
View Article and Find Full Text PDFIn dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties were originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools.
View Article and Find Full Text PDFThe symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored.
View Article and Find Full Text PDFElucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C.
View Article and Find Full Text PDFThis article comments on: . 2023. The chloroplast envelope protein LCIA transports bicarbonate .
View Article and Find Full Text PDFPhotosynthetic algae have evolved mechanisms to cope with suboptimal light and CO conditions. When light energy exceeds CO fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO Concentrating Mechanism (CCM). How light and CO signals converge to regulate these processes remains unclear.
View Article and Find Full Text PDFModulation of photoassimilate export from the chloroplast is essential for controlling the distribution of fixed carbon in the cell and maintaining optimum photosynthetic rates. In this study, we identified chloroplast TRIOSE PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 (CreTPT2) and CreTPT3 in the green alga Chlamydomonas (Chlamydomonas reinhardtii), which exhibit similar substrate specificities but whose encoding genes are differentially expressed over the diurnal cycle. We focused mostly on CreTPT3 because of its high level of expression and the severe phenotype exhibited by tpt3 relative to tpt2 mutants.
View Article and Find Full Text PDFPhotosynthetic organisms frequently experience abiotic stress that restricts their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers of PSI and PSII, resulting in a decline in primary productivity. This work describes a biological "switch" in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f (Cyt b6f) complex when the capacity for accepting electrons downstream of PSI is severely limited.
View Article and Find Full Text PDF