Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. Fsr (Fsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. FsrI reduces sulfite to sulfide with reduced F (FH), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition. However, the function of FsrIIs in ANME, which also rely on Mcr and live in sulfidic environments, is unknown. We have determined the catalytic properties of FsrII from a member of ANME-2c. Since ANME remain to be isolated, we expressed ANME2c-FsrII in a closely related methanogen, Methanosarcina acetivorans. Purified recombinant FsrII contained siroheme, indicating that the methanogen, which lacks a native sulfite reductase, produced this coenzyme. Unexpectedly, FsrII could not reduce sulfite or thiosulfate with FH. Instead, it acted as an FH-dependent nitrite reductase (FNiR) with physiologically relevant values (nitrite, 5 μM; FH 14 μM). From kinetic, thermodynamic, and structural analyses, we hypothesize that in FNiR, FH-derived electrons are delivered at the oxyanion reduction site at a redox potential that is suitable for reducing nitrite (E' [standard potential], +440 mV) but not sulfite (E', -116 mV). These findings and the known nitrite sensitivity of Mcr suggest that FNiR may protect nondenitrifying ANME from nitrite toxicity. Remarkably, by reorganizing the reductant processing system, Fsr transforms two analogous oxyanions in two distinct archaeal lineages with different physiologies and ecologies. Coenzyme F-dependent sulfite reductase (Fsr) protects methanogenic archaea inhabiting deep-sea hydrothermal vents from the inactivation of methyl coenzyme M reductase (Mcr), one of their essential energy production enzymes. Anaerobic methanotrophic archaea (ANME) that oxidize methane and rely on Mcr, carry Fsr homologs that form a distinct clade. We show that a member of this clade from ANME-2c functions as F-dependent nitrite reductase (FNiR) and lacks Fsr activity. This specialization arose from a distinct feature of the reductant processing system and not the substrate recognition element. We hypothesize FNiR may protect ANME Mcr from inactivation by nitrite. This is an example of functional specialization within a protein family that is induced by changes in electron transfer modules to fit an ecological need.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295563PMC
http://dx.doi.org/10.1128/jb.00078-22DOI Listing

Publication Analysis

Top Keywords

nitrite reductase
12
anaerobic methanotrophic
12
sulfite reductase
12
nitrite
8
f-dependent nitrite
8
reductase
8
methanotrophic archaea
8
archaea anme
8
anme oxidize
8
oxidize methane
8

Similar Publications

The compound risk of decabromodiphenyl ethane and cadmium to soil nutrient cycling in agroecosystems: Linking the enzyme, microbial community, gene networks to plant stress.

J Hazard Mater

September 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Soil serves as the habitat for numerous organisms and is increasingly threatened from co-pollution of novel brominated flame retardant (NBFRs) and heavy metals (HMs). Focusing on Deca-bromodiphenyl ethane (DBDPE) and cadmium (Cd) as the targets, we constructed a soil-lettuce-earthworm microcosm to explore co-pollution effects in rhizosphere soils. Results showed that DBDPE increased bioavailable Cd fraction to amplified its ecological risks.

View Article and Find Full Text PDF

Fungal symbiont Mycena complements impaired nitrogen utilization in Gastrodia elata and supplies indole-3-acetic acid to facilitate its seed germination.

Plant Commun

September 2025

Guizhou University of Traditional Chinese Medicine Guiyang 550025 Guizhou, China; Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-di Herbs, Guiyang 550025, Guizhou, China. Electronic address:

Nitrogen and auxin uptake plays pivotal roles in seed germination and development. Gastrodia elata, a fully mycoheterotrophic plant, depends entirely on its symbiotic association with Mycena for early growth and seed germination. The process by which Mycena enables the supply of nitrogen nutrients and auxin, which are deficient in G.

View Article and Find Full Text PDF

Salinity-driven trade-offs between nitrogen removal and microbiome dynamics in Fe-C-CWs toward saline aquaculture tailwater management.

Water Res

August 2025

College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China. Electronic address:

Salinity-driven nitrogen removal mechanisms in iron-carbon CWs (Fe-C-CWs) remain poorly understood for aquaculture tailwater management. Through a 155-day trial under four salinities (designated as S0, S10, S20, and S30), result showed that S20 achieved optimal removals of total nitrogen (84.9 ± 3.

View Article and Find Full Text PDF

Introduction: To meet the both escalating production requirements of pepino cultivation and maintaining soil sustainable development through precise exploration of chemical fertilizer input amounts.

Methods: A 5-month greenhouse experiment evaluated how varying nitrogen fertilization rates (0, 75, 150, 225, and 300 kg⋅ha) modulate soil biochemical properties and their subsequent effects on pepino productivity and fruit nutrients components.

Results: Our study revealed that the N300 treatment maximized vegetative growth (plant height, leaf and fruit dry biomass), as well as plant nitrogen and fruit calcium contents, but significantly reduced root-to-shoot ratio, vitamin C, and soluble sugars versus N0.

View Article and Find Full Text PDF

Reduction of nitrite (NO ) to nitric oxide (NO) serves important roles in NO-dependent signaling as well as in the broad nitrogen biogeochemical cycle. In biological system, copper-containing nitrite reductases (CuNiRs) are well known to bind a nitrite anion to mediate the nitrite reduction to release NO, of which the mechanism still requires further understanding. Herein, synthetic copper(II) nitrite complex with a rare binding mode, [Cu(Pr-tren)(trans-κ-ONO)] (2), is characterized physicochemically and examined in proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT) to release NO.

View Article and Find Full Text PDF