Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Realisation of a device intended for the manipulation and detection of bead-tagged DNA and other bio-molecules is presented. Acoustic radiation forces are used to manipulate polystyrene micro-beads into an optical evanescent field generated by a laser pumped ion-exchanged waveguide. The evanescent field only excites fluorophores brought within approximately 100 nm of the waveguide, allowing the system to differentiate between targets bound to the beads and those unbound and still held in suspension. The radiation forces are generated in a standing-wave chamber that supports multiple acoustic modes, permitting particles to be both attracted to the waveguide surface and also repelled. To provide further control over particle position, a novel method of switching rapidly between different acoustic modes is demonstrated, through which particles are manipulated into an arbitrary position within the chamber. A novel type of assay is presented: a mixture of streptavidin coated and control beads are driven towards a biotin functionalised surface, then a repulsive force is applied, making it possible to determine which beads became bound to the surface. It is shown that the quarter-wave mode can enhance bead to surface interaction, overcoming potential barriers caused by surface charges. It is demonstrated that by measuring the time of flight of a microsphere across the device the bead size can be determined, providing a means of multiplexing the detection, potentially detecting a range of different target molecules, or varying bead mass.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.25.285DOI Listing

Publication Analysis

Top Keywords

radiation forces
8
evanescent field
8
acoustic modes
8
surface
5
flexible acoustic
4
acoustic particle
4
particle manipulation
4
manipulation device
4
device integrated
4
integrated optical
4

Similar Publications

Surface-Driven Electron Localization and Defect Heterogeneity in Ceria.

J Am Chem Soc

September 2025

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.

View Article and Find Full Text PDF

Long-duration spaceflight exposes astronauts to various stressors that can alter human physiology, potentially causing immediate and long-term health effects. These stressors can damage biomolecules, cells, tissues, and organs, leading to adverse outcomes. Developing adverse outcome pathways (AOPs) relevant to radiation exposure can guide research priorities and inform risk assessments of future space exploration activities.

View Article and Find Full Text PDF

Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.

View Article and Find Full Text PDF

Micro-Strain Responsive Near-Infrared Mechanoluminescence for Potential Nondestructive Artificial Joint Stress Imaging.

Adv Mater

September 2025

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.

View Article and Find Full Text PDF

Objectives: Establishing paediatric DRLs is challenging due to sparse data availability. The objective was to assess paediatric fluoroscopic dose levels in Dutch clinical practice, as current diagnostic reference levels (DRLs) need updating following the European Guidelines on DRLs for Paediatric Imaging (PiDRL).

Material And Methods: Air Kerma-area Product (KAP) values were retrospectively collected from paediatric patients (0-18 years) who underwent fluoroscopic procedures in nine Dutch hospitals between 01-01-2017 and 01-06-2021.

View Article and Find Full Text PDF