Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Given increasing applications of recombinant adenoviruses for gene therapy and vaccination, there is a need for highly robust and fast purification platforms for their large scale manufacture. Traditional chromatographic methods using resins as matrices have several limitations such as high-pressure drops and slow processing rates due to pore diffusion and channelling of the feed through the bed. In contrast, membrane adsorbers offer the advantage of fast, gentle, and effective isolation. Furthermore, membranes are easy to use, no column packing is needed and, when used as disposables, no cleaning validation is necessary, representing a substantial advantage to meet cGMP requirements. In this work, a strategy for purification of adenovirus vectors from cell-culture bulks fully based on membrane devices is presented. Ultrafiltration membranes with molecular weight cutoffs of 300, 500, and 750 kDa were tested for the concentration of cell-culture supernatant after an initial clarification step. The results show that the use of ultrafiltration/diafiltration membranes not only concentrates the virus but also leads to the removal of 90% of host cell DNA and proteins in the retentate. Two membrane adsorbers (Sartobind Q and Sartobind anion direct) were evaluated for adenovirus vectors capture and purification. To define the best operating conditions, the effect of pH, conductivity, and recirculation of load bulk on the recovery yield of infectious adenoviruses were evaluated. Sartobind anion direct allows for higher recovery yields (up to 62%) of infectious adenoviruses than Sartobind Q; identical ratios between total and infectious adenoviruses (TP/IP) were achieved for both membrane adsorbers. The overall recovery yield of the process is approximately 52%; this work credits membrane technology as an alternative for the concentration and purification of adenoviruses and as a promising solution for downstream processing of other viral vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.25DOI Listing

Publication Analysis

Top Keywords

membrane adsorbers
12
infectious adenoviruses
12
based membrane
8
membrane technology
8
adenovirus vectors
8
sartobind anion
8
anion direct
8
recovery yield
8
membrane
6
purification
5

Similar Publications

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF

Bacterial cellulose (BC) was produced in dried apricot extract medium (DAEM) by . The BC yield obtained from DAEM containing 0.5 g of glucose after 10 days of incubation at 30 °C was determined as 9.

View Article and Find Full Text PDF

Advances in chitin and chitosan-based materials for microplastics treatment.

Carbohydr Polym

November 2025

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo 315201,

Microplastics (MPs) have emerged as widespread environmental pollutants in aquatic ecosystems, primarily due to the extensive use of plastic products, their persistent nature, and improper disposal methods. It is essential to develop effective purification methods to treat the hazardous MPs in water. Chitin and chitosan (CS) have gained attention as promising adsorbents for MPs because of their low cost, abundance, biodegradability, and the presence of functional groups such as amino and hydroxyl groups, which facilitate the removal of various toxins from wastewater.

View Article and Find Full Text PDF

Integrating cross-scale active sites-single atoms (SA), atom pairs (AP), and nanoparticles-into a unified catalytic system presents a promising strategy for advancing oxygen reduction reaction (ORR), an extremely important process in energy conversion. However, the synergistic interplay among these sites and their mechanistic roles remains poorly understood. Here, we report a novel catalyst (3) featuring Zn, bonded Fe-Co with dual-oxygen ligands, and FeCo nanoparticles, synthesized via pyrolysis of a metal matrix-engineered metal-organic framework (MOF).

View Article and Find Full Text PDF

Current antibiotic-resistant bacteria (ARB) disinfection techniques commonly rely on large dosages of oxidants, resulting in the presence of considerable amounts of residuals and toxic disinfection byproducts (DBPs) in water. Herein, we propose a highly effective ARB disinfection approach via activating an ultralow concentration (10 μM) of chlorite (ClO) by naturally abundant sunlight to generate various reactive species (i.e.

View Article and Find Full Text PDF