98%
921
2 minutes
20
The ENCODE (ENCyclopedia Of DNA Elements) project was launched three years ago with the purpose of identifying all of the functional elements in the human genome. ENCODE was started with 44 target sequences, which comprise 1% of the human genome. A crucial question about ENCODE is how representative it is of the human genome. Indeed, this is not a negligible problem if one considers that only 1% of the genome was selected for the project, and, more importantly, that the choice of the large DNA segments was based on two major criteria, namely the presence of extensively characterized genes and/or other functional elements, and the availability of a substantial amount of comparative sequence data. We found that the ENCODE data lead to an unbalanced representation of the compositional pattern of the human genome, especially for the GC-poorest and GC-richest regions. This unbalanced representativity of ENCODE can, however, be corrected by multiplying ENCODE data by a G/E factor (the ratio of whole genome data over ENCODE data), so amplifying the potential interest of ENCODE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2008.02.013 | DOI Listing |
Genome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDFClin Genet
September 2025
Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.
View Article and Find Full Text PDFMamm Genome
September 2025
Department of Animal Health and Anatomy, Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Travessera Dels Turons, 08193, Cerdanyola del Vallès, Barcelona, Spain.
The mouse remains the principal animal model for investigating human diseases due, among other reasons, to its anatomical similarities to humans. Despite its widespread use, the assumption that mouse anatomy is a fully established field with standardized and universally accepted terminology is misleading. Many phenotypic anatomical annotations do not refer to the authority or origin of the terminology used, while others inappropriately adopt outdated or human-centric nomenclature.
View Article and Find Full Text PDFNat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.
View Article and Find Full Text PDF