PlantTFDB: a comprehensive plant transcription factor database.

Nucleic Acids Res

College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering, Center for Bioinformatics, Peking University, Beijing 100871, China.

Published: January 2008


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transcription factors (TFs) play key roles in controlling gene expression. Systematic identification and annotation of TFs, followed by construction of TF databases may serve as useful resources for studying the function and evolution of transcription factors. We developed a comprehensive plant transcription factor database PlantTFDB (http://planttfdb.cbi.pku.edu.cn), which contains 26,402 TFs predicted from 22 species, including five model organisms with available whole genome sequence and 17 plants with available EST sequences. To provide comprehensive information for those putative TFs, we made extensive annotation at both family and gene levels. A brief introduction and key references were presented for each family. Functional domain information and cross-references to various well-known public databases were available for each identified TF. In addition, we predicted putative orthologs of those TFs among the 22 species. PlantTFDB has a simple interface to allow users to search the database by IDs or free texts, to make sequence similarity search against TFs of all or individual species, and to download TF sequences for local analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238823PMC
http://dx.doi.org/10.1093/nar/gkm841DOI Listing

Publication Analysis

Top Keywords

comprehensive plant
8
plant transcription
8
transcription factor
8
factor database
8
transcription factors
8
tfs
6
planttfdb comprehensive
4
transcription
4
database transcription
4
factors tfs
4

Similar Publications

Long noncoding RNAs as molecular architects: Shaping plant functions and physiological plasticity.

Mol Plant

September 2025

Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China; MOE Key Laboratory of Gene Function and Regulation, Sun Yat-sen University, Guangzhou 510275, P. R. China. Electronic address:

Long noncoding RNAs (lncRNAs) are emerging as pivotal regulators in gene expression networks, characterized by their structural flexibility and functional versatility. In plants, lncRNAs have gained increasing attention due to accumulating evidence of their roles in modulating developmental plasticity and agronomic traits. In this review, we focus on the origin, classification, and mechanisms of action of plant lncRNAs, with a particular emphasis on their involvement in developmental processes.

View Article and Find Full Text PDF

Redefining agroecological zones in China to mitigate climate change impacts on maize production.

Mol Plant

September 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

This study introduces Multi-Dimensional Environment (MDE) zoning to enhance maize resilience and improve stagnant yields in China amidst climate change. Utilizing comprehensive environmental and yield data, MDE zoning accurately identifies areas for targeted, climate-adaptive breeding. The tool provides a flexible framework for updates using annual variety testing and daily environmental data, optimizing production and resource allocation.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Local anesthetics such as lidocaine have been used in humans and other animals to perform surgical procedures, therapeutics, and experiments. Lidocaine discarded into the environment through industrial waste, human and animal excretion, and household waste has been detected in the aquatic environment. For example, lidocaine in rivers, lakes, and influent and effluent water has been detected at wastewater treatment plants (7 ng/L-2.

View Article and Find Full Text PDF