Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.

Biomaterials

UK Centre for Tissue Engineering, Division of Clinical Engineering, Duncan Building, Daulby Street, University of Liverpool, Liverpool, L69 3GA, UK.

Published: February 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.10.014DOI Listing

Publication Analysis

Top Keywords

ethylene oxide
16
surface roughness
12
electrostatically spun
8
spun scaffolds
8
scaffold production
8
fdia surface
8
surface
5
cell
5
sterilisation
5
uv-ozone
5

Similar Publications

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.

View Article and Find Full Text PDF

Mitochondrial-Targeting Zwitterionic Nanomedicine Based on Tertiary Amine -oxide Polymers for Triple-Negative Breast Cancer Therapy.

Biomacromolecules

September 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Triple-negative breast cancer (TNBC) remains a formidable clinical challenge due to its aggressive behavior, lack of therapeutic targets, and poor prognosis. The PI3K/AKT/mTOR pathway is highly activated in TNBC, making it a promising therapeutic target. Conventional PEGylated nanocarriers often face challenges, such as accelerated blood clearance and lysosomal trapping.

View Article and Find Full Text PDF

The present research reports the synthesis of poly-[ethylene oxide]-based composite films (500 μm) containing metal nanoparticles (NPs) [Ag ( ∼ 6 nm), Cu ( ∼ 25 nm), and Fe ( ∼ 35 nm)] as the mobile phase. The novelty of the study is in the corroboration of a plausible mechanism for the generation of metal NPs through green synthesis using herbal extracts of (Tea) and (Neem). Density functional theory (DFT) is used to optimize the phytoreductants present in both biosources, wherein the reducing and/or stabilizing functional entities are primarily hydroxyl groups (-OH).

View Article and Find Full Text PDF

pH-triggered Schottky heterojunctions for NIR-II-activated and tumor-specific pyroelectrodynamic and photothermal therapy.

J Colloid Interface Sci

September 2025

Institute of Biomedical Engineering, College of Medicine, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, PR China. Electronic address:

Pyroelectrodynamic therapy (PEDT) of tumors faces challenges due to its low electrocatalytic efficiency at mild temperature and the potential for off-target toxicity to healthy tissue. To overcome these issues, we have engineered pyroelectric nanoparticles (NPs) that feature a pH-triggered heterojunction structure and tumor-selective reactive oxidative species (ROS) production, faclitating synergistic PEDT and mild photothermal therapy (PTT). Herein, molybdenum trioxide (MoO) was deposited in-situ on the surface of tetragonal BaTiO (tBT) to create tBT@MO.

View Article and Find Full Text PDF