98%
921
2 minutes
20
Microbial reduction of perchlorate in the presence of zero-valent iron was examined in both batch and column reactors to assess the potential of iron as the electron donor for biological perchlorate reduction process. Iron-supported mixed cultures completely removed 65 mg/L of perchlorate in batch reactors in 8 days. The removal rate was similar to that observed with hydrogen gas (5%) and acetate (173 mg/L) as electron donors. Repeated spiking of perchlorate to batch reactors containing iron granules and microorganisms showed that complete perchlorate reduction by the iron-supported culture was sustained over a long period. Complete removal of perchlorate by iron-supported anaerobic culture was also achieved in a bench-scale iron column with a hydraulic residence time of 2 days. This study demonstrated the potential applicability of zero-valent iron as a source of electrons for biological perchlorate reduction. Use of zero-valent iron may eliminate the need to continually supply electron donors such as organic substrates or explosive hydrogen gas. In addition, iron is inexpensive, safe to handle, and does not leave organic residuals in the treated water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2006.03.027 | DOI Listing |
Bioresour Technol
September 2025
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China. Electronic address:
This study investigated the effects of five representative biocarriers-biochar (BC), activated carbon (AC), nano-magnetite (NM), zero-valent iron (ZVI), and polyurethane sponge (PUS)-on chain elongation (CE) from ethanol/acetate in anaerobic systems. All carriers enhanced CE to varying extents. BC and NM significantly increased caproate yields (6032.
View Article and Find Full Text PDFBioresour Technol
September 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).
View Article and Find Full Text PDFSmall
September 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Iron-carbon materials have emerged as promising heterogeneous Fenton-like catalysts for the removal of emerging organic contaminants. However, their practical applications are substantially hindered by complex preparation procedures and irreversible deactivation of iron centers. Herein, a novel double-layer core-shell catalyst Fe@FeC@Graphite (Fe-CTS-3000) is one-step synthesized by a high-temperature carbothermal shock (CTS) strategy.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 2
In this study, a novel riboflavin-mediated nanoscale zero-valent iron/peracetic acid system (RF/nZVI/PAA) was constructed to increase the removal of norfloxacin. Under the optimal conditions (PAA=10 mg/L, nZVI=20 mg/L, RF= 1 mg/L, and initial pH =4), complete norfloxacin removal was achieved within 30 min, accompanied by a 70 % mineralization rate. Electron paramagnetic resonance spectroscopy combined with quenching experiments quantitatively identified hydroxyl radical, carbon-centered radical, and singlet oxygen as the predominant reactive oxidative species (ROS) responsible for norfloxacin removal, with contributions of 42 %, 44 %, and 10 %, respectively.
View Article and Find Full Text PDFWater Res
August 2025
The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325035, PR China. Electronic address:
Constructed wetlands (CWs) face dual challenges of arsenic contamination and greenhouse gas (GHG) emissions, particularly concerning the competing processes of As(III) immobilization and methane-dependent As(V) reduction (AOM-AsR). To address this dilemma, we developed a novel microbial-nitrate-zero valent iron/manganese synergy (MNZS) system that establishes dynamic redox gradients through Fe/Mn-mediated electron flux regulation. The MNZS mechanism leverages zero valent iron/manganese (ZVI/ZVM) oxidation to create oxygen-depleted microzones, generating bioavailable Fe(II)/Mn(II) species while initiating microbial nitrate-reducing-coupled Fe(II)/Mn(II) oxidation (NRFO/NRMO).
View Article and Find Full Text PDF