Simultaneous speciation analysis of Sb(III), Sb(V) and (CH3)3SbCl2 by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry detection (HPLC-HG-AFS): application to antimony speciation in sea water.

J Chromatogr A

Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, P.O. Box 4059, Valparaíso, Chile.

Published: October 2005


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper presents an improvement for the simultaneous separation of Sb(V), Sb(III) and (CH3)3SbCl2 species by high performance liquid chromatography (HPLC) and its detection by hydride generation-atomic fluorescence spectrometry (HG-AFS). The separation was performed on an anion exchange column PRP-X100 using a gradient elution program between EDTA/KHP (potasium hydrogen phtalate) as first mobile phase and phosphate solutions solution as the second one. The chromatographic separation and the HG-AFS parameters were optimized by experimental design. The best results were obtained by using an elution program with 20 mmol l(-1) EDTA + 2 mmol(-01) KHP solution at pH 4.5, during 1.15 min, then change to 50 mmol l(-1) (NH4)2HPO4 solution at pH 8.3, switching back after 4.0 min to the first mobile phase, until 5 min, with a constant flow rate of 1.5 ml min(-1). Retention time of Sb(V), Sb(III) and trimethylantimony species were 1.22, 2.31 and 3.45 min and the detection limits were 0.13; 0.07 and 0.13 microg l(-1), respectively. Studies on the stability of this antimony species in sea water samples on the function of the elapsed time of storage in refrigerator at 4 degrees C was performed employing the optimized method. Results revealed that Sb(III) is easily oxidized within some hours to Sb(V) in sea water stored at 4 degrees C. However, when the sea water was immediately mixed with EDTA no oxidation of Sb(III) was observed up to 1 week of storage. The proposed methodology was then applied to the antimony speciation in sea water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2005.07.060DOI Listing

Publication Analysis

Top Keywords

sea water
20
high performance
8
performance liquid
8
generation-atomic fluorescence
8
fluorescence spectrometry
8
antimony speciation
8
speciation sea
8
sbv sbiii
8
elution program
8
mobile phase
8

Similar Publications

Introduction: Submarine environments pose unique challenges to maintaining physical activity and exercise routines due to confined spaces, demanding schedules, and limited resources. This study investigated submariners' physical activity patterns, sleep quality, and perceived exercise barriers in both land- and sea-based settings, with the goal of informing targeted health interventions.

Materials And Methods: Ethics approval was granted by the Defence Science and Technology Group and Edith Cowan University review panels.

View Article and Find Full Text PDF

Seawater intrusion angle controls colloidal chromium migration across coastal groundwater interfaces.

J Hazard Mater

August 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The coastal mixing zone between seawater and freshwater is a critical interface for the exchange and transformation of contaminants. Despite its significance, the influence of seawater intrusion angle on contaminant transport has been largely overlooked. In this study, we combine laboratory column experiments with reactive transport modeling to investigate how varying seawater intrusion angles affect chromium (Cr) migration, particularly in colloid-facilitated forms.

View Article and Find Full Text PDF

Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.

View Article and Find Full Text PDF

Sustainable Antimicrobial Silver@MXene Nanofiber Membranes for Enhanced Photothermal Membrane Distillation Performance.

ACS Appl Mater Interfaces

September 2025

Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Solar-driven desalination has emerged as a sustainable and efficient solution for addressing global water scarcity, especially beneficial in remote, off-grid, and disaster-affected regions. Among emerging technologies, photothermal membrane distillation (PMD) stands out due to its effective solar-energy conversion, scalability, and simplicity. Here, we report a hybrid PMD membrane fabricated by electrospinning MXene (TiCT) nanosheets integrated with silver nanoparticles (AgNPs) onto a poly(vinylidene fluoride--hexafluoropropylene) (PH) substrate.

View Article and Find Full Text PDF

Marine organism-inspired tough and adhesive patch based on thermosensitive quaternized chitin for tissue sealing/repair and hemostasis.

Carbohydr Polym

November 2025

Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China. Electronic address:

Tissue adhesives have emerged as a promising alternative to conventional sutures and staplers in the management of hemostasis, tissue defect sealing, and wound repair. However, the efficacy of current bio-adhesives in clinical practice is compromised by the limitations, including poor wet adhesion, inadequate mechanical strength, vulnerability to gastrointestinal fluids, and insufficient hemostatic performance. Herein, a marine organism-inspired tough and adhesive patch (MOTAP) was developed to address these challenges.

View Article and Find Full Text PDF