Identification of a novel protein for memory regulation in the hippocampus.

Biochem Biophys Res Commun

Laboratory of Higher Brain Functions, Institute of Neurobiology, Fudan University, Shanghai 200433, China.

Published: August 2005


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Memory formation, maintenance, and retrieval are a dynamic process, reflecting a combined outcome of new memory formation on one hand, and older memory suppression/clearance on the other. Although much knowledge has been gained regarding new memory formation, less is known about the molecular components and processes that serve the function of memory suppression/clearance. Here, we report the identification of a novel protein, termed hippyragranin (HGN), that is expressed in the rat hippocampus and its expression is reduced by hippocampal denervation. Inhibition of HGN by antisense oligonucleotide in area CA1 results in enhanced performance in Morris water maze, as well as elevated long-term potentiation. These results suggest that HGN is involved in negative memory regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.06.101DOI Listing

Publication Analysis

Top Keywords

memory formation
12
identification novel
8
novel protein
8
memory regulation
8
memory suppression/clearance
8
memory
7
protein memory
4
regulation hippocampus
4
hippocampus memory
4
formation maintenance
4

Similar Publications

Development of Zebrafish model for Iron Induced Neuroinflammation.

Fish Physiol Biochem

September 2025

Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, 56, India.

Zebrafish models have been used to research Alzheimer's disease and other neurodegenerative disorders because of their similarities to the human genetic composition and behavior. Researchers have detected iron accumulation in the post-mortem brain sections of neurodegenerative disorder patients. Therefore, the development an animal model to simulate these clinical pathological findings is important.

View Article and Find Full Text PDF

Aurora kinase A promotes trained immunity via regulation of endogenous S-adenosylmethionine metabolism.

Elife

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.

View Article and Find Full Text PDF

Neurocognitive disorders represent a significant global health challenge and are characterized by progressive cognitive decline across conditions including Alzheimer's disease, mild cognitive impairment, and diabetes-related cognitive impairment. The hippocampus is essential for learning and memory and requires intact neuroplasticity to maintain cognitive function. Recent evidence has identified the brain insulin signaling pathway as a key regulator of hippocampal neuroplasticity through multiple cellular processes including synaptic plasticity, neurotransmitter regulation, and neuronal survival.

View Article and Find Full Text PDF

The human mind constructs and updates models of events during comprehension. Event models are multidimensional, multi-timescale, and structured. They enable prediction, shape memory formation, and facilitate action control.

View Article and Find Full Text PDF

Background: Perioperative neurocognitive disorders (PND) is a significant clinical syndrome and neuroinflammation is an important pathological process. Matrix metalloproteinase 9 (MMP9) as a Zn2+-dependent matrix enzyme, not only maintains the integrity of the blood-brain barrier and synaptic plasticity, but also plays a key regulatory factor in peripheral and central nervous inflammation. This study aimed to investigate the effects of MMP9-mediated microglial polarization on surgery-induced neuroinflammation in aged rats and to provide novel targets for prevention and treatment of PND.

View Article and Find Full Text PDF