98%
921
2 minutes
20
The relative electron density resolution was discussed by the Wiener spectrum in the heavy ion CT image. The two-dimensional (2D) Wiener spectrum in the CT image was obtained from the one-dimensional (1D) Wiener spectrum of the measured residual range distribution of the water phantom for a single projection angle, and the relative electron density resolution in the CT image was calculated from the 2D Wiener spectrum. To examine the usefulness of this method, the relative electron density resolution was also estimated by other two methods; the calculation using the Wiener spectrum of the reconstructed image of the water phantom, and the estimation by the reconstructed image of the electron density resolution phantom. The result of the first method was similar to those of the other two methods. Therefore, it is useful to estimate the relative electron density resolution by the 1D Wiener spectrum of the measured residual range distribution of the water phantom for a single projection angle.
Download full-text PDF |
Source |
---|
Nano Lett
September 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
In the search for novel succinate dehydrogenase inhibitors (SDHIs) fungicides for managing rice sheath blight (RSB) and sclerotinia stem rot (SSR), 28 pyrazole-4-carboxamides incorporating stilbene or diphenylacetylene scaffolds were synthesized and evaluated for antifungal activities. The results showed that compound exhibited the most promising antifungal efficacy against and with EC (half maximal effective concentration) values of 0.004 and 0.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2025
Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,
Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The utilization of synergistic multivalent active sites holds potential in addressing the inherent sluggish kinetics of electrocatalytic reactions. Herein, we prepared au uNPs/Ni-NDC (NDC = 1,4-Naphthalenedicarboxylic acid) and leveraged the localized surface plasmon resonance (LSPR) effect to drive hot electron transfer from au nanoparticles to the Ni substrate, thereby generating multivalent active sites to boost the urea oxidation reaction (UOR). Under exciting light, au uNPs/Ni-NDC exhibited a twofold increase in UOR current accompanied by a significant negative shift in onset potential.
View Article and Find Full Text PDF