98%
921
2 minutes
20
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321270 | PMC |
http://dx.doi.org/10.1128/AEM.70.1.191-201.2004 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.
To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.
View Article and Find Full Text PDFDiscov Nano
September 2025
Department of Chemistry, A.S.P. College, Devrukh Dist, Ratnagiri, Maharashtra State, India.
Herein, ruthenium nanoparticles (RuNPs) were synthesized using Tridax procumbens leaf extract as a reducing and stabilizing agent. The synthesis was optimized by adjusting temperature, leaf extract concentration, and reaction time. The synthesized RuNPs were characterized using UV-visible, XRD, EDAX, FTIR spectroscopy, SEM, and TEM, revealing uniform size and morphology.
View Article and Find Full Text PDFInfect Drug Resist
August 2025
School of Medicine, Huzhou University, Huzhou, 313000, China.
Background: Milk powder is a key food source, especially for infants and vulnerable groups. However, Bacillus contamination during production, storage, or handling can cause spoilage, quality issues, or health risks. This study identified and isolated from commercially available Chinese milk powder.
View Article and Find Full Text PDFSci Rep
September 2025
ALS Canada Ltd, British Columbia, Burnaby, V5A 1W9, Canada.
The traditional methods for the detection and quantification of foodborne bacteria are time-consuming with the potential for false negative pathogen-free results. Rapid and effective detection and quantification of foodborne pathogenic microorganisms are crucial in prevention and control of foodborne diseases. In the last decade, the technique of droplet digital polymerase chain reaction (ddPCR) has been widely applied for the precise quantification of gene expression.
View Article and Find Full Text PDFFood Microbiol
January 2026
Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94700, Maisons-Alfort, France. Electronic address:
Bacillus cereus sensu lato (Bcsl) is a group of closely related bacterial species known for their resistant spores, enabling them to persist in a dormant state and thereby colonize and adapt across diverse environments. Bcsl is known for its harmful impact on human health, producing toxins that cause emetic and diarrheal syndromes or provoking extradigestive infections. Importantly, Bcsl is the most frequent confirmed or presumptive causative agent associated with foodborne outbreaks (FBOs) in France.
View Article and Find Full Text PDF