Axisymmetric fundamental solutions for a finite layer with impeded boundaries.

J Zhejiang Univ Sci

College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China.

Published: April 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Axisymmetric fundamental solutions that are applied in the consolidation calculations of a finite clay layer with impeded boundaries were derived. Laplace and Hankel integral transforms were utilized with respect to time and radial coordinates, respectively in the analysis. The derivation of fundamental solutions considers two-boundary value problems involving unit point loading and ring loading in the vertical. The solutions are extended to circular distributed and strip distributed normal load. The computation and analysis of settlements, vertical total stress and excess pore pressure in the consolidation layer subject to circular loading are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1631/jzus.2003.0393DOI Listing

Publication Analysis

Top Keywords

fundamental solutions
12
axisymmetric fundamental
8
layer impeded
8
impeded boundaries
8
solutions
4
solutions finite
4
finite layer
4
boundaries axisymmetric
4
solutions applied
4
applied consolidation
4

Similar Publications

The evolving landscape of antibody-drug conjugates in small cell lung cancer: From research progress to clinical application.

Biochim Biophys Acta Rev Cancer

September 2025

Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Number 440, Ji Yan Road, Jinan 250117, China. Electronic address:

Antibody-drug conjugates (ADCs), one of the emerging developing classes of antitumor drugs, have transformed the therapeutic paradigm in oncology. It stands out due to its properties of boasting the strength of both chemotherapy and targeted therapy. In small cell lung cancer (SCLC), ADC has also demonstrated its potential and appealing effect.

View Article and Find Full Text PDF

Pyrite-mediated sustainable groundwater remediation: mechanisms, applications, and challenges.

Water Res

September 2025

Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Co

As an abundant natural mineral, pyrite presents a highly promising solution for sustainable groundwater remediation, owing to its distinct electron transfer properties. However, research on pyrite's remediation capabilities has often focused on isolated mechanisms, neglecting the complex interplay between the mineral's properties, the environmental matrix, and interfacial processes, thereby limiting comprehensive understanding of its efficacy and constraints. Herein, an integrated "mechanism-application-sustainability" framework is proposed to bridge this knowledge gap.

View Article and Find Full Text PDF

Weakly hydrophobic antibiotics leaching in an alpine soil of the Tibetan Plateau in responding to macropore flow.

J Hazard Mater

September 2025

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int

In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.

View Article and Find Full Text PDF

Strategic Timing of Gene Silencing: Cellular Kinetics-Based Administration of siRNA for Optimized Photothermal Cancer Treatment.

Adv Sci (Weinh)

September 2025

Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China.

Heat shock protein 70 (HSP70) represents a critical barrier to effective mild-temperature photothermal therapy (MPTT), limiting its clinical utility in aggressive cancers like triple-negative breast cancer (TNBC). While small interfering RNA (siRNA)-mediated HSP70 suppression offers a promising solution, optimal timing for this therapeutic combination remains unexplored. Here, it is demonstrated that precisely timed administration significantly enhances MPTT efficacy through systematic temporal characterization of HSP70 expression dynamics.

View Article and Find Full Text PDF

Solid-State Quantum Coherence From a High-Spin Donor-Acceptor Conjugated Polymer.

Adv Mater

September 2025

School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Molecular spin systems that can be chemically tuned, coherently controlled, and readily integrated within devices remain central to the realization of emerging quantum technologies. Organic high-spin materials are prime candidates owing to their similarity in electronic structure to leading solid-state defect-based systems, light element composition, and the potential for entanglement and qubit operations mediated through spin-spin exchange. However, the inherent instability of these species precludes their rational design, development, and application.

View Article and Find Full Text PDF