98%
921
2 minutes
20
Three approaches commonly used to quantify diffusive gas exchange across aquatic surfaces were compared in a densely treed, low-wind environment Diffusive surface fluxes of carbon dioxide (CO2) and methane (CH4) from a small boreal reservoir were estimated using (i) surface water concentrations, the thin boundary layer (TBL) equation, and gas transfer velocities (k) calculated using sulfur hexafluoride (SF6); (ii) surface water concentrations, the TBL equation, and k estimated from wind speed; and (iii) static floating chambers (FCs). Comparisons were made during three different approximately 10-day intervals (August 2000, June and September 2001). CO2 and CH4 fluxes estimated from SF6-derived k were on average 1-3 times greater than those determined from wind-estimated k Overall agreement between FC CO2 and CH4 flux estimates and those based on SF6 and wind speed derived kvalues was much weaker, with FC CO2 and CH4 flux estimates ranging from -9 to 23 times those based on SF6 and wind-estimated k values. Chamber deployment likely enhanced gas transfer through disturbance of the surface boundary layer, and results of this study suggest that caution must be exercised concerning the use of FCs on very still water surfaces. Furthermore, findings of this study contradict the common belief that use of wind speed to approximate k is inappropriate for small bodies of water characterized by low winds and surface obstructions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es0205838 | DOI Listing |
J Acoust Soc Am
September 2025
Department of Physics, University of Louisiana at Lafayette, Lafayette, Louisiana 70503, USA.
A method is presented for determining the significant parameters, maximum wind speed and radius of maximum wind speed, of the surface winds associated with a hurricane. The method is based on Bayesian inversion, using Markov chain Monte Carlo sampling. Underwater acoustic measurements are used to estimate parameters in the axisymmetric Holland model for hurricane surface winds.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Individuals who work in the heat, such as military personnel and athletes, are often required to rapidly transition from temperate or cooler climates to hot environments. Thus, acclimation strategies are needed for individuals lacking access to hot weather. We sought to develop and validate a practical exercise with overdressing protocol for heat acclimation.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, USA. Electronic address:
This study assesses the performance of the ADMS-Urban dispersion model in estimating 1-h mean nitrogen dioxide (NO) concentrations within the street canyons of Prague. While traditional air quality modeling that relies on sparse data from localized monitoring stations, this approach pioneers the integration of traffic, background, and rooftop sensor network, to archive a more granular validation of model outputs. The results demonstrate robust model performance, with FAC2 values ranging from 0.
View Article and Find Full Text PDFPLoS One
September 2025
Electrical Engineering Determent, Faculty of Engineering, Minia University, Minia, Egypt.
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.
View Article and Find Full Text PDF