Publications by authors named "Zhuguo Li"

To address the issue of surface grain coarsening in laser-induction hybrid phase transformation of 42CrMo steel, this study investigated the effects of four pretreatment processes (quenching-tempering (QT), laser-induction quenching (LIQ), laser-induction normalizing (LIN), and laser-induction annealing (LIA)) on the austenite grain size and wear resistance after laser-induction hybrid phase transformation. The results showed that QT resulted in a tempered sorbite structure, resulting in coarse austenite grains (139.8 μm) due to sparse nucleation sites.

View Article and Find Full Text PDF

Large-differential semiconductor and oxide interconnect are widely used in high-performance multi-function integrated microsystems. In this work, spatial-confined plasma-assisted ultrafast laser microwelding has been developed to activate the inert surface and improve mass transportation for robust semiconductor-oxide integration. The inherent stress concentration within the weld of semiconductor (Si) and oxide (Sapphire) can be compensated by inserting hundreds-of-nanometer-thick intermediate oxide layer (SiO).

View Article and Find Full Text PDF

Strain engineering of patterned silicon on a sapphire wafer is achieved by modulating the spatial confined plasma during ultrafast laser-induced backward transfer. High-energy laser-ablated silicon plasma can be generated within the confined space, where a transitional SiO layer is formed in the silicon-sapphire interface. Heat transfer to sapphire can thus be hindered, which is beneficial for thermal accumulation in silicon and crystallinity improvement.

View Article and Find Full Text PDF

Three-dimensional (3D) nanoporous nitrogen-doped graphene is an ideal candidate for solar steam generation. However, the outermost dense layer formed during high-temperature thermal chemical vapor deposition (CVD) severely blocks water transport and steam escape. In this work, a technique of femtosecond laser opening hierarchical lamination (FLOHL) enabling hierarchical micro-nano hybrid scissoring of graphene is presented for its structural and performance upgrades.

View Article and Find Full Text PDF

Laser sintering of metal nanoparticles (NPs) has been widely used in flexible microelectronic device fabrication, wherein the sintered layer thickness is a key factor affecting the mechanical stability and conductivity. In this work, ultrathin flexible electronic circuits on flexible substrates with robust bonds and excellent conductivity have been fabricated through ultrafast laser-induced thickness-limited sintering of the metal NP film. When the laser fluence is below the damage threshold of the metal NP film, sintered layer thickness can be controlled by the laser parameters.

View Article and Find Full Text PDF

Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding.

View Article and Find Full Text PDF

It is thought that geopolymers are easy to carbonate, especially when they are cured in ambient temperatures. Matrix gel's composition and microstructure, and new products of geopolymers (GPs) after carbonation were investigated in this study on the basis of XRD and SEM-EDS measurements and ternary diagram analysis, which were prepared from low-lime fly ash (FA) and ground granulated blast-furnace slag (GGBS) alone or a blend, as a precursor. The specimens were hardened in a 20 °C environment with alkali activator solution (S/N = 1.

View Article and Find Full Text PDF

Integration of wafer-scale oxide and semiconductor materials meets the difficulties of residual stress and materials incompatibility. In this work, Ag NPs thin film is contributed as an energy confinement layer between oxide (Sapphire) and semiconductor (Si) wafers to localize the materials interaction during ultrafast laser irradiation. Due to the plasmonic effects generated within constructed dielectric-metal-dielectric structures (i.

View Article and Find Full Text PDF

In this paper, we distinguished the degradation of alkali-activated material (AAM) exposed to sulfuric acid as physical (scaling, spalling, cracking, breaking, etc.) and chemical degradation (neutralization), because the mechanisms of these two types of degradation are different. Then, the effects of curing method, raw materials, and their mixing proportions on the two kinds of degradation of AAMs containing GGBFS were investigated in detail, including liquid-filler ratio, component of alkali activator, chemical admixture, inactive filler alternative to fly ash (FA), addition of municipal waste incineration bottom ash (BA), etc.

View Article and Find Full Text PDF

Color is the mapping of electromagnetic waves of different wavelengths in human vision. The electronic color recognition system currently in use is mainly based on the photoelectric effect. Here, we demonstrate a color materials' recognition system based on photothermoelectric effects.

View Article and Find Full Text PDF

Oxygen-vacancy-rich WO absorbers are gaining increasing attention because of their extensive absorbance-based applications in near-infrared shielding, photocatalysis, sterilization, interfacial evaporator and electrochromic, photochromic, and photothermal fields. Thermal treatment in an oxygen-deficient atmosphere enables us to prepare WO but lacks the capacity for finely manipulating the grown structures. In this work, we present that laser-induced periodic surface structure (LIPSS) obtained by femtosecond laser ablation is a good template to grow various hierarchical WO ultrabroadband absorbers and photothermal converters by thermal oxidation annealing in air.

View Article and Find Full Text PDF

The design of metastable retained austenite is the key issue to obtain nano bainitic steel with high strength and toughness. In this study, nanostructured Fe-based bainitic coatings were fabricated using laser cladding and following isothermal heat treatment. The microstructures and mechanical properties of the laser cladded coating were investigated.

View Article and Find Full Text PDF

Long-term immobilization ratios of strontium (Sr) and cesium (Cs⁺) in paper sludge ash-based geopolymer (PS-GP) were investigated in one year. PS-GP paste specimens were prepared in the conditions of 20 °C and 100% R.H.

View Article and Find Full Text PDF

Ambient temperature geopolymerization of paper sludge ashes (PS-ashes) discharged from paper mills was studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), induction coupled plasma atomic emission spectrometry (ICP-AES), and X-ray absorption near edge structure (XANES). Two varieties of alkaline liquors were used in the PS-ash based geopolymers, corresponding to aqueous Na-metasilicate and Na-disilicate compositions. PS-ashes were found to be semi-crystalline and to have porous structures that make it possible to absorb much liquor.

View Article and Find Full Text PDF

The growth and propagation behavior of austenite-to-bainite isothermal transformation in laser-cladded, Si-rich, and Fe-based coatings is investigated. The crystallographic features, orientation relationship at different isothermal temperatures, and the morphology of the nanostructured bainite are determined. The Nishiyama-Wassermann type orientation relationship is observed at a high temperature and at a low temperature, and mixed Nishiyama-Wassermann and Kurdjumov-Sach mechanisms are seen.

View Article and Find Full Text PDF

Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process.

View Article and Find Full Text PDF

Objective: To model the relationship between stimulating stress and fracture strength using BP neural networks, and to provide a theoretical basis for accurate prediction of the rate of fracture healing.

Methods: The bilateral tibiae in New Zealand rabbits were osteotomized and fixed by stress-relaxation plate(SRP) and rigid plate(RP), respectively. The stress shielding rate and bending strength of the healing fractures were measured at 2 to 48 weeks postoperatively.

View Article and Find Full Text PDF

A first order system model is proposed for simulating the influence of stress stimulation on fracture strength during fracture healing. To validate the model, the diaphyses of bilateral tibiae in 70 New Zealand rabbits were osteotomized and fixed with rigid plates and stress-relaxation plates, respectively. Stress shielding rate and ultimate bending strength of the healing bone were measured at 2 to 48 weeks postoperatively.

View Article and Find Full Text PDF

Unequal interval jump grey model was built for raw data series with unequal interval and jump trend in this paper. Levenberg-Marquardt arithmetic that belongs to non-linear least-square. estimation was used to recognize the parameters.

View Article and Find Full Text PDF

We previously identified the major pathological changes in the respiratory and immune systems of patients who died of severe acute respiratory syndrome (SARS) but gained little information on the organ distribution of SARS-associated coronavirus (SARS-CoV). In the present study, we used a murine monoclonal antibody specific for SARS-CoV nucleoprotein, and probes specific for a SARS-CoV RNA polymerase gene fragment, for immunohistochemistry and in situ hybridization, respectively, to detect SARS-CoV systematically in tissues from patients who died of SARS. SARS-CoV was found in lung, trachea/bronchus, stomach, small intestine, distal convoluted renal tubule, sweat gland, parathyroid, pituitary, pancreas, adrenal gland, liver and cerebrum, but was not detected in oesophagus, spleen, lymph node, bone marrow, heart, aorta, cerebellum, thyroid, testis, ovary, uterus or muscle.

View Article and Find Full Text PDF

Objective: To investigate the presence and distribution of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in autopsy tissues obtained from patients died of SARS.

Methods: Immunohistochemical technique was applied in 4 fatal SARS cases to examine the autopsy tissues including the lungs, spleen, lymph nodes, brain, pituitary, heart, liver, kidney, pancreas, trachea, esophagus, gastrointestinal tract, adrenal glands, parathyroids, skin and bone marrow.

Results: Immunohistochemistry identified positive monoclonal antibody against SARS-CoV nuceeocapsid (N) protein in the alveolar epithelium and the infiltrating monocytes or macrophages in the lung, spleen and lymph nodes; the presence of the antibody was also detected in the serous gland epithelium of the trachea/bronchus, squamous epithelium of the esophagus, the gastric parietal cells, the epithelium of the intestinal tract, acidophilic cells in the parathyroids and pituitary, acinus cells in the pancreas, adrenal cortical cells, sweat gland cells, small vessel endothelium, bone marrow promyelocytes, epithelial cells of the distal convoluted tubule of the kidney, brain neurons, and the hepatocytes near the central vein.

View Article and Find Full Text PDF

In order to investigate the clinical pathology of severe acute respiratory syndrome (SARS), the autopsies of three patients who died from SARS in Nan Fang Hospital Guangdong, China were studied retrospectively. Routine haematoxylin and eosin (H&E) staining was used to study all of the tissues from the three cases. The lung tissue specimens were studied further with Macchiavello staining, viral inclusion body staining, reticulin staining, PAS staining, immunohistochemistry, ultrathin sectioning and staining, light microscopy, and transmission electron microscopy.

View Article and Find Full Text PDF