Publications by authors named "Zhipeng Xi"

Aims: Intervertebral disc degeneration (IDD) and sagittal-oriented articular processes can restrict motility and increase stiffness of the motion segment, potentially causing compensatory stress and higher motility in adjacent segments. It is unclear if these factors trigger IDD progression in adjacent segments. This study aimed to elucidate this using functional MRI, and identify biomechanical mechanisms with a validated numerical model.

View Article and Find Full Text PDF

Background: The lumbar motion segment, comprising the intervertebral disc and bilateral articular processes, functions as a cohesive unit for load transmission. Morphological alterations in these components can influence local stress distribution, potentially contributing to the development of degenerative changes. Research indicates that sagittally oriented articular processes may reduce the incidence of severe zygapophyseal joint osteoarthritis (ZJOA) by lowering the load transmission ratio.

View Article and Find Full Text PDF

As one of the chronic diseases with high incidence in contemporary society, cervical spondylosis has increasing patient groups who gradually present a low age, and it seriously affects social and public health. Although modern medicine has made great progress in the pathological research and clinical treatment of cervical spondylosis, patients still face gastrointestinal side effects of nonsteroidal anti-inflammatory drugs(NSAIDs), neck pain, limited mobility, upper limb numbness, and other symptoms after conservative or surgical treatment. In the theory of traditional Chinese medicine(TCM), cervical spondylosis belongs to the categories of "Bi syndrome" "stiff neck" "stiff Bi", etc.

View Article and Find Full Text PDF

Background: Osteoporosis is the major risk factor for adjacent vertebral fracture (AVF). T-Score (DXAsp) cannot eliminate the confounding effect caused by pathological osteogenesis. Hounsfield unit (HU) values are credible predictors of bone density but cannot elucidate its regional differences.

View Article and Find Full Text PDF

Objective: This study investigates the correlation between magnetic resonance diffusion tensor imaging (DTI) parameters and biochemical composition in degenerative intervertebral disc nucleus pulposus tissue, offering a potential reference for the clinical diagnosis and efficacy evaluation of intervertebral disc degeneration.

Methods: Human lumbar intervertebral disc nucleus pulposus tissue samples were collected via full endoscopic minimally invasive surgery. DTI was employed to quantitatively measure fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the degenerative nucleus pulposus, examining the relationship between Pfirrmann grading and these DTI parameters.

View Article and Find Full Text PDF

Background: Intervertebral disc (IVD) degeneration is the main cause of neck pain. Although conventional magnetic resonance imaging can detect morphological changes in intervertebral disc degeneration, it cannot provide accurate and objective evaluations. Magnetic resonance diffusion tensor imaging (DTI) reflects the microstructural changes in tissues by describing the diffusion of water molecules.

View Article and Find Full Text PDF

The treatment of bone defects remains a great clinical challenge. With the development of science and technology, bone tissue engineering technology has emerged, which can mimic the structure and function of natural bone tissues and create solutions for repairing or replacing human bone tissues based on biocompatible materials, cells and bioactive factors. Hydrogels are favoured by researchers due to their high water content, degradability and good biocompatibility.

View Article and Find Full Text PDF

Low back pain caused by intervertebral disc degeneration (IDD) has emerged as a significant global public health concern, with far-reaching consequences for patients' quality of life and healthcare systems. Although previous research have revealed that the mechanisms of intervertebral disc cell apoptosis, pyroptosis and necroptosis can aggravate IDD damage by mediating inflammation and promoting extracellular matrix degradation, but they cannot explain the connection between different cell death mechanisms and ion metabolism disorders. The latest study shows that cell death mechanisms such as cellular senescence, ferroptosis, and cuproptosis, and PANopotosis have similar roles in the progression of intervertebral disc degeneration, but not exactly the same damage mechanism.

View Article and Find Full Text PDF

Study Design: A retrospective study.

Purpose: To investigate the correlation between Hounsfield unit (HU) values measured by chest computed tomography (CT) and dual-energy Xray absorptiometry (DXA) T-scores. HU-based thoracolumbar (T11 and T12) cutoff thresholds were calculated for a cohort of Chinese patients.

View Article and Find Full Text PDF

Purpose: To explore the validity of the thoracic spine Hounsfield Unit (HU) measured by chest computed tomography (CT) for opportunistic screening of diabetic osteoporosis. The current study attempted to establish a diagnostic threshold for thoracic spine HU in a type 2 diabetes mellitus (T2DM) population with osteoporosis.

Patients And Methods: The current study retrospectively included 334 patients with T2DM.

View Article and Find Full Text PDF

Background: The pathogenesis of postoperative complications in patients with osteoporotic vertebral compressive fractures (OVCFs) undergoing percutaneous vertebroplasty (PVP) is multifaceted, with local biomechanical deterioration playing a pivotal role. Specifically, the disparity in stiffness between the bone cement and osteoporotic cancellous bone can precipitate interfacial stress concentrations, potentially leading to cement-augmented vertebral body collapse and clinical symptom recurrence. This study focuses on the biomechanical implications of the space between the bone cement and bony endplate (BEP), hypothesizing that this interface may be a critical locus for stress concentration and subsequent vertebral failure.

View Article and Find Full Text PDF

Background: Osteoporosis is one of the risk factors for screw loosening after lumbar fusion. However, the probability of preoperative osteoporosis screening in patients with lumbar degenerative disease is low. Therefore, the aim of this study was to investigate whether a simplified vertebral bone quality (VBQ) score based on T12 T1-MRI could opportunistically predict osteoporosis in patients with degenerative lumbar spine diseases.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy.

Purpose: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology.

View Article and Find Full Text PDF

Cadmium (Cd) is a highly toxic heavy metal element that might adversely affect sperm function such as the acrosome reaction (AR). Although it is widely recognized that zinc (Zn) plays a crucial role in sperm quality, the complete elucidation of how Zn ameliorates Cd-induced sperm dysfunction is still unclear. In this study, we aimed to explore the protective effects of Zn against the sperm dysfunction induced by Cd in the freshwater crab Sinopotamon henanense.

View Article and Find Full Text PDF

Objective: Intervertebral disc degeneration (IVDD) constitutes a crucial pathological foundation for spinal degenerative diseases (SDD) and stands as a primary contributor to both low back pain (LBP) and disability. The progression of IVDD is linked to structural and functional alterations in tissues, where an imbalance in the inflammatory microenvironment can induce extracellular matrix (ECM) degradation, senescence, and apoptosis. This imbalance is a key pathomechanism in the disease's development, gaining considerable attention in recent years.

View Article and Find Full Text PDF

Background: Disuse is a typical phenotype of osteoporosis, but the underlying mechanism has yet to be identified in elderly patients. Disc collapse and intervertebral disc (IVD) fibrosis are two main pathological changes in IVD degeneration (IDD) progression, given that these changes affect load transmission patterns, which may lead to disuse osteoporosis of vertebral bodies and zygapophyseal joint (ZJ) osteoarthritis (ZJOA) biomechanically.

Methods: Clinical data from 59 patients were collected retrospectively.

View Article and Find Full Text PDF

Screw loosening is a widely reported issue after spinal screw fixation and triggers several complications. Biomechanical deterioration initially causes screw loosening. Studies have shown that incomplete insertion of pedicle screws increases the risk of screw breakage by deteriorating the local mechanical environment.

View Article and Find Full Text PDF

Background Context: The relationship between osteoporosis and intervertebral disc degeneration (IDD) remains unclear. Considering that annular tear is the primary phenotype of IDD in the lumbar spine, the deteriorating local biomechanical environment may be the main trigger for annular tears.

Purpose: To investigate whether poor bone mineral density (BMD) in the vertebral bodies may increase the risk of annular tears via the degradation of the local biomechanical environment.

View Article and Find Full Text PDF

Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates adjacent vertebral fractures (AVF) following percutaneous vertebroplasty (PVP), emphasizing the role of biomechanical deterioration, particularly in cranial vertebral bodies compared to caudal ones.
  • Through the analysis of clinical data from 101 patients and numerical mechanical simulations, the researchers aimed to understand the differences in bone mineral density and intervertebral cement leakage (ICL) between these vertebral areas.
  • Findings revealed a significantly higher incidence of cranial AVF, but no significant differences were noted in bone mineral density or ICL rates, highlighting the need for further exploration of the underlying mechanisms.
View Article and Find Full Text PDF

Metamaterials are usually designed using biomimetic technology based on natural biological characteristics or topology optimization based on prior knowledge. Although satisfactory results can be achieved to a certain extent, there are still many performance limitations. For overcoming the above limitations, this paper proposes a rapid metamaterials design method based on the generation of random topological patterns.

View Article and Find Full Text PDF

Background: Quantitative magnetic resonance imaging (MRI) has the function of noninvasive quantitative evaluation, providing unique advantages in intervertebral disc degeneration (IDD) assessment. Although studies exploring the field for domestic and international scholars are increasingly being published, there is a lack of systematic scientific measurement and clinical analysis of the literature in this field.

Methods: Articles published from the respective database establishment to September 30, 2022, were obtained from the Web of Science core collection (WOSCC), PubMed database, and ClinicalTrials.

View Article and Find Full Text PDF

Background: Adjacent vertebral fracture (AVF) is a frequently observed complication after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compressive fracture. Biomechanical deterioration initially induces a higher risk of AVF. Studies demonstrated that the aggravation of regional differences in the elastic modulus of different components might deteriorate the local biomechanical environment and increase the risk of structural failure.

View Article and Find Full Text PDF

Background: Adjacent segment disease (ASD) is a common complication after lumbar fusion and is still traditionally treated by open surgery. In recent years, with the development of minimally invasive techniques, percutaneous endoscopic surgery(PES) has been used for the treatment of ASD after lumbar fusion due to its unique benefits. Nevertheless, it remains unclear about its significant clinical efficacy and advantages over conventional open surgery.

View Article and Find Full Text PDF

Background: The fixation-induced biomechanical deterioration will increase the risk of adjacent segment diseases (ASD) after lumbar interbody fusion with Bilateral pedicle screw (BPS) fixation. The accurate adjustment of insertional pedicle screw positions is possible, and published studies have reported its mechanical effects. However, no studies clarified that adjusting insertional screw positions would affect the postoperative biomechanical environment and the risk of ASD.

View Article and Find Full Text PDF