98%
921
2 minutes
20
Background: The fixation-induced biomechanical deterioration will increase the risk of adjacent segment diseases (ASD) after lumbar interbody fusion with Bilateral pedicle screw (BPS) fixation. The accurate adjustment of insertional pedicle screw positions is possible, and published studies have reported its mechanical effects. However, no studies clarified that adjusting insertional screw positions would affect the postoperative biomechanical environment and the risk of ASD. The objective of this study was to identify this issue and provide theoretical references for the optimization of insertional pedicle screw position selections.
Methods: The oblique lumbar interbody fusion fixed by BPS with different insertional positions has been simulated in the L4-L5 segment of our previously constructed and validated lumbosacral model. Biomechanical indicators related to ASD have been computed and recorded under flexion, extension, bending, and axial rotation loading conditions.
Results: The change of screw insertional positions has more apparent biomechanical effects on the cranial than the caudal segment. Positive collections can be observed between the reduction of the fixation length and the alleviation of motility compensation and stress concentration on facet cartilages. By contrast, no pronounced tendency of stress distribution on the intervertebral discs can be observed with the change of screw positions.
Conclusions: Reducing the fixation stiffness by adjusting the insertional screw positions could alleviate the biomechanical deterioration and be an effective method to reduce the risk of ASD caused by BPS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9877423 | PMC |
http://dx.doi.org/10.3389/fsurg.2022.1004642 | DOI Listing |
Spine Deform
September 2025
Spine Unit, Department of Orthopedic Surgery, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
Study Design: This is a retrospective single-center study.
Purpose: The purpose is to investigate the incidence of distal junctional kyphosis (DJK) when fused proximal to the stable sagittal vertebra (SSV) in adolescent idiopathic scoliosis (AIS) patients undergoing selective thoracic fusion.
Methods: We retrospectively reviewed a consecutive cohort of surgically treated AIS patients with Lenke 1-2 A/B curves between 2011 and 2022 with a minimum of 2 years of follow-up.
Medicine (Baltimore)
September 2025
Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
The cervicothoracic junction (CTJ) presents a surgical challenge due to its transitional nature from mobile to rigid segments. Therefore, the biomechanical characteristics of this transitional zone must be taken into consideration during instrumentation. This study aimed to determine the efficacy of the cervical pedicle screw placement (CPS) combined with 5.
View Article and Find Full Text PDFEur Spine J
September 2025
Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou, China.
J Vis Exp
August 2025
Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University;
Posterior lumbar screw fixation is the most common surgical method for lumbar disc herniation, but patients often face multiple complications postoperatively. The occurrence of screw track loosening can lead to fusion failure and even life-threatening screw track extrusion. However, there is currently a lack of animal models specifically targeting changes in the screw track following lumbar screw fixation.
View Article and Find Full Text PDFJ Vasc Surg Cases Innov Tech
December 2025
Faculdade de Ciências Médicas de Alagoas, Vascular and Endovascular Surgery Division, Alagoas, Alagoas, Brazil.
Background: Iatrogenic thoracic aortic injury (TAI) is a rare but well-recognized complication of spine surgery, lacking standardized treatment guidelines due to its rarity and variability of manifestations.
Methods: We present a new case of TAI successfully managed with endovascular repair and systematically reviewed 52 articles (1991-2024) reporting 64 cases, including demographics, surgical indications, injury patterns, and treatments.
Results: A 53-year-old man with a T7 fracture underwent posterior spinal instrumentation and developed chest pain due to a combination of impingement and screw penetration into the thoracic aorta and was treated with thoracic endovascular aortic repair (TEVAR) and removal of pedicle screws.