This study investigates the synthesis, antibacterial activity, structure-activity relationships (SARs), and molecular docking of F- and CF-substituted biphenyl derivatives (5A-5K) as potential antimicrobial agents. Ten novel biphenyl derivatives were synthesized, incorporating trifluoromethyl (CF) and fluorine (F) substitutions, to evaluate their efficacy against various bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrobial assays demonstrated that the F substitution significantly enhanced antibacterial activity, with the bis-F derivative (5D) showing improved potency compared to the other compounds.
View Article and Find Full Text PDFAs a novel approach to killing bacteria, photodynamic therapy holds great potential in antibacterial treatment. However, the majority of traditional photosensitizers exhibit relatively low reactive oxygen species (ROS) quantum yield. Therefore, it is essential to develop photosensitizers with high ROS quantum yield to effectively kill bacteria.
View Article and Find Full Text PDFACS Biomater Sci Eng
May 2025
The global rise of antimicrobial resistance (AMR) has rendered many traditional antibiotics ineffective, leading to an urgent need for alternative therapeutic strategies. Antimicrobial polymers, with their ability to rapidly kill bacteria by disrupting or crossing membranes and/or targeting multiple microbial functions without inducing resistance, offer a promising solution. This perspective explores recent innovations in the design and synthesis of antimicrobial polymers, focusing on their chemical motifs, structural derivatives, and their applications in combating systemic and topical infections.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2025
The incidence of serious lung infections due to Mycobacterium abscessus, a worrying non-tuberculosis mycobacteria (NTM) species, is rising and has in some countries surpassed tuberculosis. NTM are ubiquitous in the environment and can cause serious lung infections in people who are immunocompromised or have pre-existing lung conditions. M.
View Article and Find Full Text PDFESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties.
View Article and Find Full Text PDFJ Antimicrob Chemother
October 2023
Objectives: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown.
View Article and Find Full Text PDFInt J Biol Macromol
July 2023
Trauma-induced articular cartilage damages are common in clinical practice. Hydrogels have been used to fill the cartilage defects and act as extracellular matrices for cell migration and tissue regeneration. Lubrication and stability of the filler materials are essential to achieve a satisfying healing effect in cartilage regeneration.
View Article and Find Full Text PDFThe antimicrobial resistance crisis is a global health issue requiring discovery and development of novel therapeutics. However, conventional screening of natural products or synthetic chemical libraries is uncertain. Combination therapy using approved antibiotics with inhibitors targeting innate resistance mechanisms provides an alternative strategy to develop potent therapeutics.
View Article and Find Full Text PDFNew antimicrobials are urgently needed to combat Gram-negative bacteria, particularly multi-drug resistant (MDR) and phenotypically resistant biofilm species. At present, only sequence-defined alpha-peptides (e.g.
View Article and Find Full Text PDFJ Control Release
December 2022
The rapid emergence and spread of drug-resistant bacteria, as one of the most pressing public health threats, are declining our arsenal of available antimicrobial drugs. Advanced antimicrobial drug delivery systems that can achieve precise and controlled release of antimicrobial agents in the microenvironment of bacterial infections will retard the development of antimicrobial resistance. A variety of extracellular enzymes are secreted by bacteria to destroy physical integrity of tissue during their invasion of host body, which can be utilized as stimuli to trigger "on-demand" release of antimicrobials.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2022
Frequent outbreaks of Salmonella Typhimurium infection, in both animal and human populations and with the potential for zoonotic transmission, pose a significant threat to the public health sector. The rapid emergence and spread of more invasive multidrug-resistant clinical isolates of Salmonella further highlight the need for the development of new drugs with effective broad-spectrum bactericidal activities. The synthesis and evaluation of main-chain cationic polyimidazolium 1 (PIM1) against several Gram-positive and Gram-negative bacteria have previously demonstrated the efficacy profile of PIM1.
View Article and Find Full Text PDFIn recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells.
View Article and Find Full Text PDFThe growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development.
View Article and Find Full Text PDFBiomaterials
June 2021
Zwitterionic polymers are classical antifouling polymers but they require specialized monomers that have cationic and anionic charges integrated into a single monomer. Herein, we show that pseudo-zwitterionic copolymers synthesized from a mixture of 2 monomers each having a single opposite polarity has excellent antibiofilm efficacy. We have discovered a new mixed-charge copolymer brush (#1-A) synthesized from 2 oppositely charged monomers, the anionic SPM (3-Sulfopropyl methacrylate) and the cationic AMPTMA ((3-Acrylamidopropyl) trimethylammonium chloride), that achieves broad spectrum in vitro antibiofilm effect of greater than 99% reductions against all six Gram-positive and Gram-negative bacteria tested.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2021
We report the first demonstration of the efficient bacteria targeting properties of DNA-based polymeric micelles with high-density DNA corona. Nanoscale polymer micelles derived from DNA-b-polystyrene (DNA-b-PS) efficiently selected most tested Gram-positive strains over Gram-negative strains; single-strand DNAs were 20-fold less selective. We demonstrate that these targeting properties were derived from the interaction between densely packed DNA strands of the micelle corona and the peptidoglycan layers of Gram-positive bacteria.
View Article and Find Full Text PDFAntimicrobial peptides that target the integrity of bacterial envelopes can eradicate pathogens with little development of resistance, but they often inflict nonselective toxicity toward mammalian cells. The prevailing approach to optimize the selectivity of cationic peptides has been to modify their composition. Instead, we invent a new generation of broad-spectrum antibacterial nanoconstructs with negligible mammalian cell toxicity through a competitive displacement of counter polyanions from the complementary polycations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Cationic polymers are promising antibacterial agents because bacteria have a low propensity to develop resistance against them, but they usually have low biocompatibility because of their hydrophobic moieties. Herein, we report a new biodegradable and biocompatible chitosan-derived cationic antibacterial polymer, 2,6-diamino chitosan (2,6-DAC). 2,6-DAC shows excellent broad-spectrum antimicrobial activity with minimum inhibitory concentrations (MICs) of 8-32 μg/mL against clinically relevant and multidrug-resistant (MDR) bacteria including , , , , , and .
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2020
Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2020
Carbapenem-resistant Gram-negative bacteria (GNB) are heading the list of pathogens for which antibiotics are the most critically needed. Many antibiotics are either unable to penetrate the outer-membrane or are excluded by efflux mechanisms. Here, we report a cationic block β-peptide (PAS8-b-PDM12) that reverses intrinsic antibiotic resistance in GNB by two distinct mechanisms of action.
View Article and Find Full Text PDFThe treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass.
View Article and Find Full Text PDFThe development of novel reagents and antibiotics for combating multidrug resistance bacteria has received significant attention in recent years. In this study, new antimicrobial star polymers (14-26 nm in diameter) that consist of mixtures of polylysine and glycopolymer arms were developed and were shown to possess antimicrobial efficacy toward Gram positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) (with MIC values as low as 16 μg mL(-1)) while being non-hemolytic (HC50 > 10,000 μg mL(-1)) and exhibit excellent mammalian cell biocompatibility. Structure function analysis indicated that the antimicrobial activity and mammalian cell biocompatibility of the star nanoparticles could be optimized by modifying the molar ratio of polylysine to glycopolymers arms.
View Article and Find Full Text PDF