98%
921
2 minutes
20
Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties. The pH-responsive shell consisting of three cationic layers of chitosan and three anionic layers of -cinnamic acid (-CA) was made via layer-by-layer (LbL) assembly. -CA layers are hydrophobic and impermeable to protons in acid, thus enhancing cell gastric resistance in the stomach, while chitosan layers endow strong interaction between the cell surface and the mucosal wall which facilitates cell mucoadhesion in the intestine. Two model cells, probiotic GG and dead , which serve as inactivated whole-cell vaccine were chosen to test the design. Increased survival and retention during oral administration were observed for coated cells as compared with naked cells. Partial removal of the coating (20-60% removal) after acid treatment indicates that the coated vaccine can expose its surface immunogenic protein after passage through the stomach, thus facilitating vaccine immune stimulation in the intestine. As a smart oral delivery platform, this design can be extended to various macromolecules, thus providing a promising strategy to formulate oral macromolecules in the prevention and treatment of diseases at a cellular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00348 | DOI Listing |
iScience
September 2025
Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.
This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.
View Article and Find Full Text PDFJ Oral Microbiol
September 2025
Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea.
Background: The neonatal period is critical for oral microbiome establishment, but temporal patterns in preterm newborns remain unclear. This study examined longitudinal microbiome changes in full-term and preterm newborns and assessed perinatal and clinical influences.
Methods: Oral swabs were collected from 98 newborns (23 full-term, 75 preterm).
Int J Nanomedicine
September 2025
The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.
View Article and Find Full Text PDFBMC Public Health
September 2025
Heidelberg Institute of Global Health, Heidelberg University, Bergheimer Str. 20, Zimmer 317, 69115, Heidelberg, Germany.
Background: People living in prison face exceptionally high prevalence rates of tooth decay, periodontal disease, and poor oral health-related quality of life. Despite its importance, various aspects of oral healthcare in prison settings remain understudied. The present study investigates the barriers and facilitators associated with providing and utilizing oral health services in prison settings, drawing on insights from prison health experts, managerial and custodial staff, healthcare providers, and individuals with lived experience of imprisonment.
View Article and Find Full Text PDFPharm Dev Technol
September 2025
School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, wenhua Road 103, Shenyang 110016, PR China.
Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.
View Article and Find Full Text PDF