Single-Cell Oral Delivery Platform for Enhanced Acid Resistance and Intestinal Adhesion.

ACS Appl Mater Interfaces

NTU Food Technology Centre, Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore 637459, Singapore.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties. The pH-responsive shell consisting of three cationic layers of chitosan and three anionic layers of -cinnamic acid (-CA) was made via layer-by-layer (LbL) assembly. -CA layers are hydrophobic and impermeable to protons in acid, thus enhancing cell gastric resistance in the stomach, while chitosan layers endow strong interaction between the cell surface and the mucosal wall which facilitates cell mucoadhesion in the intestine. Two model cells, probiotic GG and dead , which serve as inactivated whole-cell vaccine were chosen to test the design. Increased survival and retention during oral administration were observed for coated cells as compared with naked cells. Partial removal of the coating (20-60% removal) after acid treatment indicates that the coated vaccine can expose its surface immunogenic protein after passage through the stomach, thus facilitating vaccine immune stimulation in the intestine. As a smart oral delivery platform, this design can be extended to various macromolecules, thus providing a promising strategy to formulate oral macromolecules in the prevention and treatment of diseases at a cellular level.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00348DOI Listing

Publication Analysis

Top Keywords

oral delivery
12
delivery platform
8
cells
5
single-cell oral
4
platform enhanced
4
acid
4
enhanced acid
4
acid resistance
4
resistance intestinal
4
intestinal adhesion
4

Similar Publications

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF

Background: The neonatal period is critical for oral microbiome establishment, but temporal patterns in preterm newborns remain unclear. This study examined longitudinal microbiome changes in full-term and preterm newborns and assessed perinatal and clinical influences.

Methods: Oral swabs were collected from 98 newborns (23 full-term, 75 preterm).

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Background: People living in prison face exceptionally high prevalence rates of tooth decay, periodontal disease, and poor oral health-related quality of life. Despite its importance, various aspects of oral healthcare in prison settings remain understudied. The present study investigates the barriers and facilitators associated with providing and utilizing oral health services in prison settings, drawing on insights from prison health experts, managerial and custodial staff, healthcare providers, and individuals with lived experience of imprisonment.

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF