98%
921
2 minutes
20
Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686044 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.00910 | DOI Listing |
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).
View Article and Find Full Text PDFFood Res Int
November 2025
Dairy Research Department, Food Technology Research Institute, ARC, Giza 12619, Egypt.
Domiati cheese, one of the most popular soft white cheeses, is particularly susceptible to microbial deterioration due to its high moisture content and low salt concentration. This study assesses the effectiveness of a new edible coating made from carboxymethyl chitosan nanoparticles loaded with pomegranate peel extract (CCS LP) in increasing the shelf life of Domiati cheese. The study compares CCS LP's performance to pomegranate peel extract (PPE) and carboxymethyl chitosan nanoparticles (CCS NPs) alone.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Development of effective, safe, and degradable food packaging is essential to meet the demands of consumers and to ensure the continued growth of the food industry. In this study, superabsorbent bioactive aerogels based on cellulose and polyvinyl alcohol combined with the antibacterial bioactive extracts extracted from Portulaca oleracea were fabricated for the preservation of chilled meats. The main physicochemical and mechanical properties of the bioactive aerogels were characterized and evaluated.
View Article and Find Full Text PDFMacromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDF