Publications by authors named "Zejun Ding"

The multislice method is an important algorithm for electron diffraction and image simulations in transmission electron microscopy (TEM). We have proposed a quantum algorithm of the multislice method based on quantum circuit model previously. In this work, we have developed an improved quantum algorithm.

View Article and Find Full Text PDF

Narrow bandgap inorganic compounds are extremely important in many areas of physics. However, their basic parameter database for surface analysis is incomplete. Electron inelastic mean free paths (IMFPs) are important parameters in surface analysis methods, such as electron spectroscopy and electron microscopy.

View Article and Find Full Text PDF

The well known nonlinear fluctuating hydrodynamics theory has grouped diffusions in anharmonic chains into two universality classes: one is the Kardar-Parisi-Zhang (KPZ) class for chains with either asymmetric potential or nonzero static pressure and the other is the Gaussian class for chains with symmetric potential at zero static pressure, such as Fermi-Pasta-Ulam-Tsingou (FPUT)-β chains. However, little is known of the nonequilibrium transient diffusion in anharmonic chains. Here, we reveal that the KPZ class is the only universality class for nonequilibrium transient diffusion, manifested as the KPZ scaling of the side peaks of momentum correlation (corresponding to the sound modes correlation), which was completely unexpected in equilibrium FPUT-β chains.

View Article and Find Full Text PDF

Nanocellulose, as the most abundant natural nanomaterial with sustainability, biodegradability, and excellent mechanical properties, has been widely applied in modern electronic systems, particularly, in the flexible electrochemical energy storage devices. Herein, a reduced graphene oxide (RGO)/cellulose nanocrystal/cellulose nanofiber (RCC) composite membrane was prepared by using a one-pot method. Compared to the pure RGO membranes, the RCC composite membranes exhibited better mechanical properties and hydrophilicity.

View Article and Find Full Text PDF

Spherical cellulose nanocrystal (CNC), as a high value cellulose derivative, shows an excellent application potential in biomedicine, food packaging, energy storage, and many other fields due to its special structure. CNC is usually prepared by the mixed acid hydrolysis method from numerous cellulose raw materials. However, the pretreatment route in preparing spherical CNC from cellulose fiber is still used when choosing microcrystalline cellulose (MCC) as the raw material, which is not rigorous and economical.

View Article and Find Full Text PDF

Due to the environmental degradation and energy depletion, the strategy for fabricating high-performance supercapacitor electrode materials based on graphene and nanocellulose has received great attention. Herein, an environmentally friendly reduced graphene oxide (RGO)/cellulose nanocrystal (CNC) composite conductive film was prepared using L-ascorbic acid (L-AA) as the reductant of graphene oxide (GO). Based on chemical structure analysis, L-AA was proved to be an effective reductant to remove oxygen containing groups of GO.

View Article and Find Full Text PDF

In this work, Mn-doped ZnS nanorods were synthesized by a facile hydrothermal method. The morphology, structure, and composition of the as-prepared samples were investigated. The temperature-dependent photoluminescence of ZnS:Mn nanorods was analyzed, and the corresponding activation energies were calculated by using a simple two-step rate equation.

View Article and Find Full Text PDF

The TPP-2M formula is the most popular empirical formula for the estimation of the electron inelastic mean free paths (IMFPs) in solids from several simple material parameters. The TPP-2M formula, however, poorly describes several materials because it relies heavily on the traditional least-squares analysis. Herein, we propose a new framework based on machine learning to overcome the weakness.

View Article and Find Full Text PDF

2D transition metal dichalcogenides (TMDs) have received widespread interest by virtue of their excellent electrical, optical, and electrochemical characteristics. Recent studies on TMDs have revealed their versatile utilization as electrocatalysts, supercapacitors, battery materials, and sensors, etc. In this study, MoS nanosheets are successfully assembled on the porous VS (P-VS ) scaffold to form a MoS /VS heterostructure.

View Article and Find Full Text PDF

Plasmon gain by core-level electrons or elastic electrons observed in past studies seems to be of no practical value in material characterization, mainly because of their ultralow signal intensities. Nevertheless, in the emission spectra of Au samples, we have observed plasmon gain in secondary electrons. The electrons gain energy from surface plasmons after escaping from the surface and thereby only carry surface-plasmon information in the vacuum above the surface.

View Article and Find Full Text PDF

The electronic structure and optical properties of group-VA (N, P, As, and Sb)-doped CuZnSiSe alloys have been studied using a hybrid functional through density functional theory calculations. The minor lattice distortion and small formation energy indicate that synthesis of these alloys is highly possible in experiment. For each doped alloy, an isolated and partially filled intermediate band (IB) appears in its band structure.

View Article and Find Full Text PDF

In situ Raman spectra of HoVO micro- and nanocrystals were obtained at high pressures up to 25.4 and 18.0 GPa at room temperature, respectively.

View Article and Find Full Text PDF

Mapping the charge distribution in nano scale systems still is a difficult task, but is important to provide fundamental insights into the properties of materials. We demonstrate how in-line holography in transmission electron microscopy can be used to extract the charge distribution in the nanowire in a quantitative way. This technique can realize a fast acquisition of delicate charge variations.

View Article and Find Full Text PDF

Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-αβ lattices.

View Article and Find Full Text PDF

So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent.

View Article and Find Full Text PDF

Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements.

View Article and Find Full Text PDF

Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al.

View Article and Find Full Text PDF

We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method.

View Article and Find Full Text PDF

It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects.

View Article and Find Full Text PDF

We have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid.

View Article and Find Full Text PDF

Natural graphite shows little optical response. Based on first-principles calculations, we demonstrate, for the first time, that an in-plane pressure-induced slip between atomic layers causes a strong anomalous enhancement and large red-shifts in the infrared and far infrared optical absorption by graphite. Specifically, a slip along the armchair direction induces an absorption feature that redshifts from ∼ 3 eV to ∼ 0.

View Article and Find Full Text PDF

Dissipative particle dynamics (DPD) simulation was used to study the self-assembly of laterally nanostructured vesicles in aqueous solution from μ-[poly(ethylethylene)]-[poly(ethylene oxide)][poly(perfluoropropylene oxide)] (μ-EOF) star terpolymers. The simulated results show that the laterally nanostructured vesicle forms when the length of the hydrophilic O blocks are relatively short. In the lateral nanostructure, the hexagonally packed domains formed by the hydrophobic F blocks are immersed in a two-dimensional hydrophobic E block matrix.

View Article and Find Full Text PDF

High-quality thermochromic monoclinic VO2(M) and series of W-doped V(1-x)W(x)O2(M) nanoparticles were successfully synthesized by an improved thermolysis method. The products were investigated using X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) technologies. The measurement of DSC revealed that the metal-insulator phase transition (MIT) of 2.

View Article and Find Full Text PDF

Microstructures self-assembled by amphiphilic ABC π-shaped block copolymers in dilute solution have been investigated by self-consistent field theory. The effects of architectural parameters and the interaction strength among the three blocks have been studied systematically. Our calculation results show that the distance of the two graft blocks has stronger effect than the length of graft blocks and the position of the first graft point on the phase behavior.

View Article and Find Full Text PDF

Uniform monoclinic core-shell and hexagonal urchin-like LaPO4:Eu(3+) spheres are synthesized via an attractive hydrothermal method owing to the higher yield and simplicity. Photoluminescence and Raman spectra of two samples have been investigated under high pressure up to 28 GPa using diamond anvil cells. At ambient pressure, both samples exhibit same luminescent properties with that of bulk monazite LaPO4:Eu(3+).

View Article and Find Full Text PDF