98%
921
2 minutes
20
In situ Raman spectra of HoVO micro- and nanocrystals were obtained at high pressures up to 25.4 and 18.0 GPa at room temperature, respectively. The appearance of new peaks in the Raman spectra and the discontinuities of the Raman-mode shift provided powerful evidence for an irreversible zircon-to-scheelite structure transformation for HoVO microcrystals at 7.2 GPa and for HoVO nanocrystals at 8.7 GPa. The lattice contraction caused by the size effect was thought to be responsible for the different phase-transition pressures. Also, the higher stability of HoVO nanocrystals compared with the microcrystals was also confirmed using the Raman frequencies and pressure coefficients. The results of the phase transition of HoVO were compared with previously reported rare-earth orthovanadates, and the phase diagram of REVO with RE ionic radius at different pressures was presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643725 | PMC |
http://dx.doi.org/10.1021/acsomega.8b02519 | DOI Listing |
J Sep Sci
September 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Nifurtimox (NFX) is a chiral drug used for the treatment of Chagas Disease. Little attention has been paid to the enantioselective properties of chiral drugs used for neglected tropical diseases, highlighting the need for further studies in this area. In this work, the enantioselective properties of NFX were carefully investigated by HPLC using different chiral stationary phases (CSPs) and chromatographic modes.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Introduction: leaves (FSL), a traditional Chinese ethnomedicinal herbal material used to prepare health-promoting infusions and pharmacologically noted for their robust anti-inflammatory, antioxidant, and broad-spectrum antiviral activities, nevertheless have an as-yet-uncharacterized molecular mechanism of action against human adenovirus (HAdV).
Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive-Orbitrap/MS) was employed to identification of FSL components. Publicly available GEO datasets were mined to identify HAdV-associated differentially expressed genes (DEGs).
IUCrdata
August 2025
State Key Laboratory of Metastable Materials Science and Technology Yanshan University,Qinhuangdao 066004 People's Republic of China.
A cubic phase with composition MgRu (tetra-tetra-contamagnesium hepta-ruthenium) was obtained during high-pressure sinter-ing of a mixture with an initial chemical composition of MgRuB. MgRu has space-group symmetry 43 and adopts the Mg Pt type of structure, which is categorized as one of the two structural types identified in complex compounds.
View Article and Find Full Text PDFDalton Trans
September 2025
Departamento de Fisica Aplicada-ICMUV, MALTA Consolider Team, Universitat de Valencia, Av. Dr. Moliner 50, 46100 Burjassot (Valencia), Spain.
The impact of external pressure on the characteristics of SrTeO has been thoroughly examined using density-functional theory calculations up to 100 GPa. It has been predicted that SrTeO undergoes three phase transitions in the pressure range covered by this study. A first transition occurs at 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of High Pressure and Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
Solid-state lithium-ion batteries have raised considerable attention due to their great potential for the development of new energy storage devices with high energy density and safety. However, enhancing ion conductivity in solid-state electrolytes stands as a pivotal challenge for the large-scale commercialization of next-generation lithium-ion batteries. Here, a high-pressure strategy is reported to achieve the significant enhancement of lithium-ion conductivity by 2 orders of magnitude and the disappearance of grain boundary resistance in polyoxometalate LiPWO electrolyte via an irreversible phase transition from Keggin to bronze structure.
View Article and Find Full Text PDF