Publications by authors named "Zejuan Li"

Loop-mediated isothermal amplification (LAMP) has emerged as a rapid and accessible alternative to traditional polymerase chain reactions (PCR) for nucleic acid amplification in research, significantly enhancing pathogen detection in infectious disease diagnostics. This review aims to bridge the gap in the literature regarding the real-world applications of LAMP assays and their potential to improve infectious disease diagnostics across various healthcare settings. We evaluated the current landscape of United States Food and Drug Administration (FDA)-authorized LAMP-based microbial tests, categorizing 30 such tests and detailing their regulatory pathways, such as 510(k) clearance and Emergency Use Authorization (EUA), particularly in response to the COVID-19 pandemic.

View Article and Find Full Text PDF

Spatial transcriptomics links gene expression with tissue morphology, however, current tools often prioritize genomic analysis, lacking integrated image interpretation. To address this, we present Thor, a comprehensive platform for cell-level analysis of spatial transcriptomics and histological images. Thor employs an anti-shrinking Markov diffusion method to infer single-cell spatial transcriptome from spot-level data, effectively combining gene expression and cell morphology.

View Article and Find Full Text PDF

Impact of long-term plasma storage on biomarker analysis is critical for ensuring data reliability. Cell-free DNA (cfDNA) epigenetic markers, including 5-hydroxymethylcytosine (5hmC), have emerged for disease detection, prognosis, and treatment response. However, the effects of prolonged storage on 5hmC analysis remain unclear.

View Article and Find Full Text PDF

Bone diseases, such as bone metastases, pose significant therapeutic challenges due to the distinct physiological environment of skeletal tissues, which complicates the targeted delivery of nucleic acid therapeutics. Existing delivery systems, including lipid nanoparticles (LNP) and polyethylenimine (PEI), struggle to achieve precise bone targeting effectively. To address this issue, we developed a polymer-based bone-targeting bioreducible nucleic acid delivery vector, poly[alendronic acid--(,'-bis(acryloyl)cystamine--4-amino-1-butanol)] (ALN-Pabol), which incorporates alendronic acid (ALN) for precise bone targeting.

View Article and Find Full Text PDF

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method.

View Article and Find Full Text PDF

Nucleic acid drugs show immense therapeutic potential, but achieving selective organ targeting (SORT) for pulmonary disease therapy remains a formidable challenge due to the high mortality rate caused by pulmonary embolism intravenous administration or the mucus barrier in the respiratory tract nebulized delivery. To meet this important challenge, we propose a new strategy to prepare lung-selective nucleic-acid vectors generated by decoration of lung-targeting proteins on bioreducible polyplexes. First, we synthesized polyamidoamines, named pabol and polylipo, to encapsulate and protect nucleic acids, forming polyamidoamines/mRNA polyplexes.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets.

View Article and Find Full Text PDF

Accurate prognostic markers are essential for guiding effective lung cancer treatment strategies. The level of 5-hydroxymethylcytosine (5hmC) in tissue is independently associated with overall survival (OS) in lung cancer patients. We explored the prognostic value of cell-free DNA (cfDNA) 5hmC through genome-wide analysis of 5hmC in plasma samples from 97 lung cancer patients.

View Article and Find Full Text PDF

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML). However, MRD cannot be detected in many patients using current methods. We developed a highly sensitive 5-hydroxymethylcytosine (5hmC) signature in cell-free DNA by analyzing 115 AML patients and 86 controls.

View Article and Find Full Text PDF
Article Synopsis
  • * The lack of TET2 leads to increased expression of Tetraspanin 13 (TSPAN13), which activates CXCR4/CXCL12 signaling, enhancing LSC migration into the bone marrow and sustaining their growth.
  • * TET2 deficiency causes changes in TSPAN13 mRNA, making it more stable due to specific recognition of methyl modifications, highlighting TET2's role as a demethylase involved in AML progression and LSC behavior.
View Article and Find Full Text PDF

Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients.

View Article and Find Full Text PDF

Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls.

View Article and Find Full Text PDF

To investigate germline predisposition in lymphoma, we performed whole-exome sequencing and discovered a novel variant (c.817-1G>T) in programmed cell death 1 ligand 2 (PD-L2) in a family with early-onset lymphomas and other cancers. The variant was present in the proband with follicular lymphoma and his son with Hodgkin's lymphoma.

View Article and Find Full Text PDF

R-2-hydroxyglutarate (R-2HG), a metabolite produced by mutant isocitrate dehydrogenases (IDHs), was recently reported to exhibit anti-tumor activity. However, its effect on cancer metabolism remains largely elusive. Here we show that R-2HG effectively attenuates aerobic glycolysis, a hallmark of cancer metabolism, in (R-2HG-sensitive) leukemia cells.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) present heterogeneously, ranging from infantile bone marrow failure associated with very short telomeres to adult-onset interstitial lung disease (ILD) with normal telomere length. Yield of genetic testing and phenotypic spectra for TBDs caused by the expanding list of telomere genes in adults remain understudied. Thus, we screened adults aged ≥18 years with a personal and/or family history clustering hematologic disorders and/or ILD enrolled on The University of Chicago Inherited Hematologic Disorders Registry for causative variants in 13 TBD genes.

View Article and Find Full Text PDF

Objectives: Informatics tools that support next-generation sequencing workflows are essential to deliver timely interpretation of somatic variants in cancer. Here, we describe significant updates to our laboratory developed bioinformatics pipelines and data management application termed Houston Methodist Variant Viewer (HMVV).

Materials And Methods: We collected feature requests and workflow improvement suggestions from the end-users of HMVV version 1.

View Article and Find Full Text PDF

Fat mass and obesity-associated protein (FTO), an RNA N-methyladenosine (mA) demethylase, plays oncogenic roles in various cancers, presenting an opportunity for the development of effective targeted therapeutics. Here, we report two potent small-molecule FTO inhibitors that exhibit strong anti-tumor effects in multiple types of cancers. We show that genetic depletion and pharmacological inhibition of FTO dramatically attenuate leukemia stem/initiating cell self-renewal and reprogram immune response by suppressing expression of immune checkpoint genes, especially LILRB4.

View Article and Find Full Text PDF

Standardized variant curation is essential for clinical care recommendations for patients with inherited disorders. Clinical Genome Resource (ClinGen) variant curation expert panels are developing disease-associated gene specifications using the 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines to reduce curation discrepancies. The ClinGen Myeloid Malignancy Variant Curation Expert Panel (MM-VCEP) was created collaboratively between the American Society of Hematology and ClinGen to perform gene- and disease-specific modifications for inherited myeloid malignancies.

View Article and Find Full Text PDF

With improvements in DNA sequencing technologies and the consequent reduction in costs, next generation sequencing is being utilized increasingly in panel-based testing to perform molecular profiling of tumors. Such tumor-based panels are often referred to as 'somatic' panels, but this term is misleading and should not be used, since not all DNA variants within a tumor are somatic in nature. Every cell in a person's body contains that person's germline DNA, including tumor cells.

View Article and Find Full Text PDF

Purpose: The aim of the current study was to determine the prevalence and clinical predictors of germline cancer susceptibility mutations in patients with malignant mesothelioma (MM).

Methods: We performed targeted capture and next-generation sequencing of 85 cancer susceptibility genes on germline DNA from 198 patients with pleural, peritoneal, and tunica vaginalis MM.

Results: Twenty-four germline mutations were identified in 13 genes in 23 (12%) of 198 patients.

View Article and Find Full Text PDF

Purpose: To examine the impact of a targeted exome approach for the molecular diagnosis of patients nationwide with a wide range of ataxia-related phenotypes.

Methods: One hundred and seventy patients with ataxia of unknown etiology referred from clinics throughout the United States and Canada were studied using a targeted exome approach. Patients ranged in age from 2 to 88 years.

View Article and Find Full Text PDF

N-methyladenosine (mA), the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), has been shown to play critical roles in various normal bioprocesses such as tissue development, stem cell self-renewal and differentiation, heat shock or DNA damage response, and maternal-to-zygotic transition. The mA modification is deposited by the mA methyltransferase complex (MTC; i.e.

View Article and Find Full Text PDF