Background: Cardiovascular diseases are diverse, intersecting, and characterized by multistage complexity. The growing demand for personalized diagnosis and treatment poses significant challenges to clinical diagnosis and pharmacotherapy, increasing potential medication risks for doctors and patients. The Cardiovascular Medication Guide (CMG) demonstrates distinct advantages in managing cardiovascular disease, serving as a critical reference for front-line doctors in prescription selection and treatment planning.
View Article and Find Full Text PDFNutrient resorption is an important strategy for nutrient conservation, especially in permafrost ecosystems where plant growth is limited by nutrients. Based on the measurements mainly derived from tropical, subtropical and temperate regions, current projections suggest that resorption efficiency is higher for leaf nitrogen (N) than for phosphorus (P) in cold regions. However, these projections have not been fully validated due to the lack of observations in permafrost ecosystems.
View Article and Find Full Text PDFBackground: Deep convolutional neural networks (DCNNs) have been proposed for medical Magnetic Resonance Imaging (MRI) segmentation, but their effectiveness is often limited by challenges in semantic discrimination, boundary delineation, and spatial context modeling.
Purpose: To address these challenges, we present the Multidimensional Consistency Constraint Learning Network (MDCC-Net) for multi-structure segmentation of cardiac MRI using a semi-supervised approach.
Methods: MDCC-Net incorporates a shared encoder, multiple differentiated decoders, and leverages pyramid boundary consistency features and spatial consistency constraints.
Global nitrogen (N) enrichment is modifying microbial interactions, which can be represented by network complexity. While a number of studies have explored how N addition influences the microbial intra-trophic network, its effects on the inter-trophic network have rarely been investigated. Here, we examined the effects of 8 years of multilevel N additions (i.
View Article and Find Full Text PDFClimate warming may induce substantial changes in the ecosystem carbon cycle, particularly for those climate-sensitive regions, such as alpine grasslands on the Tibetan Plateau. By synthesizing findings from warming experiments, this review elucidates the mechanisms underlying the impacts of experimental warming on carbon cycle dynamics within these ecosystems. Generally, alterations in vegetation structure and prolonged growing season favor strategies for enhanced ecosystem carbon sequestration under warming conditions.
View Article and Find Full Text PDFPlants (Basel)
September 2024
Strawberries are susceptible to various diseases during their growth, and leaves may show signs of diseases as a response. Given that these diseases generate yield loss and compromise the quality of strawberries, timely detection is imperative. To automatically identify diseases in strawberry leaves, a KTD-YOLOv8 model is introduced to enhance both accuracy and speed.
View Article and Find Full Text PDFPermafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited.
View Article and Find Full Text PDFHigh-quality cardiopulmonary resuscitation (CPR) and training are important for successful revival during out-of-hospital cardiac arrest (OHCA). However, existing training faces challenges in quantifying each aspect. This study aimed to explore the possibility of using a three-dimensional motion capture system to accurately and effectively assess CPR operations, particularly about the non-quantified arm postures, and analyze the relationship among them to guide students to improve their performance.
View Article and Find Full Text PDFMagnetorheological finishing (MRF) technology is characterized by its high convergence rate and minimal subsurface damage as advantages. However, the non-Gaussian type tool influence function (TIF) it generates may cause mid-frequency errors and oriented surface texture issues. Magnetorheological precession finishing (MRPF) technology capable of generating Gaussian-like removal functions, lacks a clearly defined removal function model.
View Article and Find Full Text PDFOpt Express
December 2023
Magnetorheological polishing (MRF) has emerged as a critical non-contact sub-aperture polishing technology due to its notable attributes of high precision and minimal damage. However, MRF's inherent D-shaped removal function leads to reduced convergence efficiency of surface form error and introduces mid-spatial-frequency (MSF) waviness. To address these challenges, we propose magnetorheological precession finishing (MRPF) technology, which ingeniously combines MRF with bonnet precession polishing to generate a Gaussian-like removal function.
View Article and Find Full Text PDFSci Total Environ
February 2024
Increasing reactive nitrogen (N) to terrestrial ecosystems is considered to enhance ecosystem carbon sink, which plays a critical role in ameliorating global warming. Besides this indirect buffering of temperature rise, the N-induced enhancement of vegetation growth may exert a biophysical cooling effect on soils. However, the magnitude and drivers of this cooling effect have rarely been evaluated.
View Article and Find Full Text PDFKnowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau.
View Article and Find Full Text PDFGlob Chang Biol
July 2023
Soil respiration (Rs), as the second largest flux of carbon dioxide (CO ) between terrestrial ecosystems and the atmosphere, is vulnerable to global nitrogen (N) enrichment. However, the global distribution of the N effects on Rs remains uncertain. Here, we compiled a new database containing 1282 observations of Rs and its heterotrophic component (Rh) in field N manipulative experiments from 317 published papers.
View Article and Find Full Text PDFGlob Chang Biol
May 2023
Nat Commun
August 2022
Permafrost thaw can stimulate microbial decomposition and induce soil carbon (C) loss, potentially triggering a positive C-climate feedback. However, earlier observations have concentrated on bulk soil C dynamics upon permafrost thaw, with limited evidence involving soil C fractions. Here, we explore how the functionally distinct fractions, including particulate and mineral-associated organic C (POC and MAOC) as well as iron-bound organic C (OC-Fe), respond to permafrost thaw using systematic measurements derived from one permafrost thaw sequence and five additional thermokarst-impacted sites on the Tibetan Plateau.
View Article and Find Full Text PDFRoots play important roles in determining crop development under drought. Under such conditions, the molecular mechanisms underlying key responses and interactions with the rhizosphere in crop roots remain limited compared with model species such as . This article reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms to these responses.
View Article and Find Full Text PDFOne of the major uncertainties for carbon-climate feedback predictions is an inadequate understanding of the mechanisms governing variations in ecosystem productivity response to warming. Temperature and water availability are regarded as the primary controls over the direction and magnitude of warming effects, but some unexplained results signal that our understanding is incomplete. Using two complementary meta-analyses, we present evidence that soil nitrogen (N) availability drives the warming effects on ecosystem productivity more strongly than thermal and hydrological factors over a broad geographical scale.
View Article and Find Full Text PDFGlob Chang Biol
September 2022
One of the major uncertainties for projecting permafrost carbon (C)-climate feedback is a poor representation of the non-growing season carbon dioxide (CO ) emissions under a changing climate. Here, combining in situ field observations, regional synthesis and a random forest model, we assessed contemporary and future soil respired CO (i.e.
View Article and Find Full Text PDFEnviron Sci Technol
July 2022
Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.
View Article and Find Full Text PDFSci China Life Sci
May 2022
Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.
View Article and Find Full Text PDFMicromachines (Basel)
November 2021
Hydrostatic guideways are widely applied in ultra-precision machine tools, and motion errors undermine the machining accuracy. Among all the influence factors, the thermal effect distributes most to motion errors. Based on the kinematic theory and the finite element method, a 3-degrees-of-freedom quasi-static kinematics model for motion errors containing the thermal effect was established.
View Article and Find Full Text PDFEnviron Microbiol
January 2022
Understanding biogeographical patterns and underlying processes of belowground community assembly is crucial for predicting soil functions and their responses to global environmental change. However, little is known about potential differences of belowground community assembly among bacteria, fungi, protists and soil animals, particularly for alpine ecosystems. Based on the combination of large-scale field sampling, high-throughput marker-gene sequencing and multiple statistical analyses, we explored patterns and drivers of belowground community assembly in alpine grasslands on the Tibetan Plateau.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
September 2021
A field manipulative experiment was carried out during 2015 and 2016 to examine the changes and influencing factors of root production, turnover rate, and standing crop under different nitrogen (N) addition levels, ., 0, 1, 2, 4, 8 and 16 g N·m·a, in a Tibetan alpine steppe. The results showed that root production and standing crop decreased linearly or exponentially with increasing N addition rates.
View Article and Find Full Text PDFGlob Chang Biol
November 2021
Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability.
View Article and Find Full Text PDF