Several studies have explored ways to enhance the interaction between the channel layer and ions to realize artificial synapses using organic electrochemical transistors (OECTs). The attachment of glycol side chains can remarkably enhance the ion transport to improve nonvolatile properties polar groups; however, a comprehensive and methodical evaluation of this phenomenon has yet to be conducted. In this study, we observed the reactivity toward ions and the doping mechanism that changes by glycol group substitution to the side chains of DPP polymers.
View Article and Find Full Text PDFOne of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron-ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.
View Article and Find Full Text PDFThe pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFOrganic photovoltaics (OPVs) have great potential to drive low-power consumption electronic devices under indoor light due to their highly tunable optoelectronic properties. Thick devices (>300 nm photo-active junctions) are desirable to maximize photocurrent and to manufacture large-scale modules via solution-processing. However, thick devices usually suffer from severe charge recombination, deteriorating device performances.
View Article and Find Full Text PDFGlycol sidechains are often used to enhance the performance of organic photoconversion and electrochemical devices. Herein, we study their effects on electronic states and electronic properties. We find that polymer glycolation not only induces more disordered packing, but also results in a higher reorganisation energy due to more localised π-electron density.
View Article and Find Full Text PDFThis study introduces wavelength-dependent multistate programmable optoelectronic logic-in-memory (OLIM) operation using a broadband photoresponsive pNDI-SVS floating gate. The distinct optical absorption of the relatively large bandgap DNTT channel (2.6 eV) and the narrow bandgap pNDI-SVS floating gate (1.
View Article and Find Full Text PDFIn blue phosphorescent dopants, the tetradentate platinum(II) complex is a promising material showing high efficiency and stability in devices. However, metal-metal-to-ligand charge transfer (MMLCT) formation leads to low photo-luminescence quantum yields (PLQYs), wide spectra, and intermolecular interaction. To suppress MMLCT, PtON-tb-TTB and PtON-tb-DTB are designed using theoretical simulation by modifying t-butyl in PtON-TBBI.
View Article and Find Full Text PDFHigh power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability.
View Article and Find Full Text PDFA poly (3,6-bis(thiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.
View Article and Find Full Text PDFBoron-based compounds exhibiting a multiresonance thermally activated delayed fluorescence are regarded promising as a narrowband blue emitter desired for efficient displays with wide color gamut. However, their planar nature makes them prone to concentration-induced excimer formation that broadens the emission spectrum, making it hard to increase the emitter concentration without raising CIE coordinate. To overcome this bottleneck, we here propose -Tol-ν-DABNA-Me, wherein sterically hindered peripheral phenyl groups are introduced to reduce intermolecular interactions, leading to excimer formation and thus making the pure narrowband emission character far less sensitive to concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
To realize efficient, green solvent-processable organic solar cells (OSCs), considerable effort has been expended on the development of conjugated materials with both superior optoelectrical properties and processability. However, molecular design strategies that enhance solubility often reduce crystalline/electrical properties of the materials. In this study, we develop three new guest small-molecule acceptors (SMAs) (Y-4C-4O, Y-6C-4O, and Y-12C-4O) featuring inner side chains consisting of terminal oligo(ethylene glycol) (OEG) groups and alkyl spacers of different lengths.
View Article and Find Full Text PDFReplacing environmentally damaging toxic halogenated/aromatic hydrocarbon organic solvents commonly used in solution-processed organic field-effect transistors with more sustainable green solvents has in recent years become a subject of various studies. In the current review, we summarize the properties of solvents used to process organic semiconductors and relate these properties to the toxicities of the solvents. And then, the research efforts to avoid using toxic organic solvents are reviewed, in particular the efforts involving molecular engineering of organic semiconductors achieved by introducing solubilizing side chains or substituents into the backbone and with synthetic strategies to asymmetrically deform the structure of the organic semiconductors and random copolymerization, as well as efforts involving the use of miniemulsion-based nanoparticles to process organic semiconductors.
View Article and Find Full Text PDFNear-infrared organic light-emitting diodes (NIR OLEDs) with heavy metals are regularly reported due to the advantages of their various applications in healthcare services, veil authentication, and night vision displays. For commercial applications, it is necessary to look at radiance capacity (RC) instead of radiance because of power consumption. However, recent papers still reported only simple high radiance performance and do not look at device from the point of view of RC.
View Article and Find Full Text PDFHerein, we design and characterize 9-heterocyclic ring non-fullerene acceptors (NFAs) with the extended backbone of indacenodithiophene by cyclopenta [2,1-b:3,4-b'] dithiophene (CPDT). The planar conjugated CPDT donor enhances absorption by reducing vibronic transition and charge transport. Developed NFAs with different end groups shows maximum absorption at approximately 790-850 nm in film.
View Article and Find Full Text PDFMulti-resonance thermally activated delayed fluorescence (MR-TADF) molecules based on boron and nitrogen atoms are emerging as next-generation blue emitters for organic light-emitting diodes (OLEDs) due to their narrow emission spectra and triplet harvesting properties. However, intermolecular aggregation stemming from the planar structure of typical MR-TADF molecules that leads to concentration quenching and broadened spectra limits the utilization of the full potential of MR-TADF emitters. Herein, a deep-blue MR-TADF emitter, pBP-DABNA-Me, is developed to suppress intermolecular interactions effectively.
View Article and Find Full Text PDFThe development of conjugated polymers with structures that are suitable for efficient molecular doping and charge transport is a key challenge in the construction of high-performance conjugated polymer-based thermoelectric devices. In this study, three novel conjugated polymers based on dithienopyrrole (DTP) are synthesized and their thermoelectric properties are compared. When doped with p-dopant, a donor-acceptor type copolymer, DPP-MeDTP, exhibits higher electrical conductivity and thermoelectric power factor compared to the other donor-donor type copolymers.
View Article and Find Full Text PDFSemiconducting polymers with oligoethylene glycol (OEG) sidechains have attracted strong research interest for organic electrochemical transistor (OECT) applications. However, key molecular design rules for high-performance OECTs via efficient mixed electronic/ionic charge transport are still unclear. In this work, new glycolated copolymers (gDPP-TTT and gDPP-TTVTT) with diketopyrrolopyrrole (DPP) acceptor and thiophene (T) and vinylene (V) thiophene-based donor units are synthesized and characterized for accumulation mode OECTs, where a long-alkyl-group (C ) attached to the DPP unit acts as a spacer distancing the OEG groups from the polymer backbone.
View Article and Find Full Text PDFMulti-resonance (MR) thermally activated delayed fluorescent (TADF) emitters are highly attractive due to their superior color purity as well as efficient light-harvesting ability from singlets and triplets. However, boron and nitrogen-based MR-TADF emitters suffer from their strong π-π interaction owing to their rigid flat cores. Herein, a boron-based multi-resonance blue TADF emitter with suppressed intermolecular interaction and isomer formation is developed through a simple synthetic process by introducing meta-xylene and meta-phenyphenyl groups to the core.
View Article and Find Full Text PDFWhen the intensity of the incident light increases, the photocurrents of organic photodiodes (OPDs) exhibit relatively early saturation, due to which OPDs cannot easily detect objects against strong backlights, such as sunlight. In this study, this problem is addressed by introducing a light-intensity-dependent transition of the operation mode, such that the operation mode of the OPD autonomously changes to overcome early photocurrent saturation as the incident light intensity passes the threshold intensity. The photoactive layer is doped with a strategically designed and synthesized molecular switch, 1,2-bis-(2-methyl-5-(4-cyanobiphenyl)-3-thienyl)tetrafluorobenzene (DAB).
View Article and Find Full Text PDFWe developed new bithiophene extended electron acceptors based on -alkoxythenyl-substituted IDIC with three different end groups, named as IDT-BT-IC, IDT-BT-IC4F, and IDT-BT-IC4Cl, respectively. The ultraviolet absorption maximum was redshifted and the bandgap was decreased as the strong electron accepting ability of the end group increased. A differential scanning calorimetry thermogram analysis revealed that all the new acceptors have a crystalline character.
View Article and Find Full Text PDFSmall-molecule acceptor (SMA)-based organic solar cells (OSCs) have achieved high power conversion efficiencies (PCEs), while their long-term stabilities remain to be improved to meet the requirements for real applications. Herein, we demonstrate the use of donor-acceptor alternating copolymer-type compatibilizers (DACCs) in high-performance SMA-based OSCs, enhancing their PCE, thermal stability, and mechanical robustness simultaneously. Detailed experimental and computational studies reveal that the addition of DACCs to polymer donor ()-SMA blends effectively reduces -SMA interfacial tensions and stabilizes the interfaces, preventing the coalescence of the phase-separated domains.
View Article and Find Full Text PDF