98%
921
2 minutes
20
In blue phosphorescent dopants, the tetradentate platinum(II) complex is a promising material showing high efficiency and stability in devices. However, metal-metal-to-ligand charge transfer (MMLCT) formation leads to low photo-luminescence quantum yields (PLQYs), wide spectra, and intermolecular interaction. To suppress MMLCT, PtON-tb-TTB and PtON-tb-DTB are designed using theoretical simulation by modifying t-butyl in PtON-TBBI. Both materials effectively suppress MMLCT and exhibit high PLQYs of 99% and 78% in 5 wt% doped film, respectively. The PtON-tb-TTB and PtON-tb-DTB devices have maximum external quantum efficiencies of 26.3% and 20.9%, respectively. Additionally, the PtON-tb-DTB device has an extended lifetime of 169.3 h with an initial luminescence of 1200 nit, which is 8.5 times greater than the PtON-TBBI device. Extended lifetime because of suppressed MMLCT and smaller displacement between the lowest triplet and triplet metal-centered states compared to other dopants. The study provides an effective approach to designing platinum(II) complexes for long device lifetimes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998867 | PMC |
http://dx.doi.org/10.1038/s41467-024-47307-3 | DOI Listing |
Nat Commun
April 2024
Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, Seoul, Republic of Korea.
In blue phosphorescent dopants, the tetradentate platinum(II) complex is a promising material showing high efficiency and stability in devices. However, metal-metal-to-ligand charge transfer (MMLCT) formation leads to low photo-luminescence quantum yields (PLQYs), wide spectra, and intermolecular interaction. To suppress MMLCT, PtON-tb-TTB and PtON-tb-DTB are designed using theoretical simulation by modifying t-butyl in PtON-TBBI.
View Article and Find Full Text PDFAcc Chem Res
March 2023
Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C.
ConspectusDesigning bright and efficient near-infrared (NIR) emitters has drawn much attention due to numerous applications ranging from biological imaging, medical therapy, optical communication, and night-vision devices. However, polyatomic organic and organometallic molecules with energy gaps close to the deep red and NIR regime are subject to dominant nonradiative internal conversion (IC) processes, which drastically reduces the emission intensity and exciton diffusion length of organic materials and hence hampers the optoelectronic performances. To suppress nonradiative IC rates, we suggested two complementary approaches to solve the issues: exciton delocalization and molecular deuteration.
View Article and Find Full Text PDFInorg Chem
May 2008
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Four kinds of 3,5-dialkylpyrazolate(R2pz)-bridged dinuclear platinum(II) complexes [Pt2(mu-R2pz)2(dfppy)2] (dfppy=2-(2,4-difluorophenyl)pyridine; R2pz=pyrazolate in 1, 3,5-dimethylpyrazolate in 2, 3-methyl-5- tert-butylpyrazolate in 3, and 3,5-bis(tert-butyl)pyrazolate in 4) were theoretically investigated by the DFT(B3PW91) method. The Stokes shift of their phosphorescence spectra was discussed on the basis of the potential energy curve (PEC) of the lowest energy triplet excited state (T1). This PEC significantly depends on the bulkiness of substituents on pz.
View Article and Find Full Text PDFInorg Chem
September 2000
Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo 112-8551, Japan.
A novel amphiphilic Pt complex containing 2,6-bis(1-octadecylbenzimidazol-2-yl)pyridine (L18), [Pt(L18)Cl](PF6), has been synthesized. The complex exhibits concentration-dependent absorption and emission spectra in solution. With increasing the concentration of the Pt complex, we observed a new absorption band centered at 550 nm derived from a metal-metal d sigma* to ligand pi* charge transfer (MMLCT) transition and the corresponding broad emission centered at 650 nm.
View Article and Find Full Text PDF