98%
921
2 minutes
20
The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e., -HOP-Y6-F (F), -HOP-Y6-Cl (Cl), -HOP-Y6-F (F), and -HOP-Y6-Cl (Cl), with outer side chains of alkoxy-2-ethylhexyl attached at the or positions. Devices containing the -position acceptors blended with the polymer donor PM6 achieve power conversion efficiencies (PCEs) at least 1.27-fold higher than those of devices containing -position acceptors. The enhanced performance can be attributed to the formation of donor-acceptor domains that are advantageous for charge carrier generation, transport, and collection. This is due to variations in phase aggregation that result from steric hindrance effects at the - and -position acceptors. As a result, -position acceptors with lower steric hindrance improved π-π and lamellar stacking, whereas the -position acceptors encountered excessive steric hindrance, reducing their photovoltaic efficiencies. Additionally, the -position acceptors demonstrate long charge carrier lifetimes, which suppress recombination in the charge transfer state and promote efficient charge separation. These results underline the critical role of side-chain direction in optimizing Y6-based acceptors for improving photovoltaic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c17649 | DOI Listing |
J Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.
View Article and Find Full Text PDFOrg Lett
September 2025
College of Chemistry and Chemical Engineering and Luoyang Key Laboratory of Green Synthesis and Photofunctional Materials, Luoyang Normal University, Luoyang, Henan 471934, China.
Inspired by the excellent stereoinduction of palladium catalytic glycosylation with glycals via an inner-sphere pathway, a nickel-catalyzed, stereoselective -aryl glycosylation has been developed for glucals bearing a pentafluorobenzoate (PFB) group at the C3 position. The extremely electron-deficient nature of PFB not only endows stronger activity compared to the traditional leaving groups but also functions as an orientation group, presumably through the strong π-π interactions with the bipyridine ligand coordinated to the nickel center, thereby enabling the β-selective formation of a -aryl glycosidic bond with aryl iodides as glycosyl acceptors under mild conditions. This method features a broad substrate scope, high efficiency, and scalability, providing a general solution to the synthesis of challenging β--glycosides.
View Article and Find Full Text PDFRSC Adv
August 2025
ETSEAFiV, UdL Av. de l'Alcalde Rovira Roure, 191 25198 Lleida Spain
A key challenge in industrial processes is replacing fossil-based solvents with sustainable, renewable alternatives while minimizing industrial waste and enhancing sustainability. Deep eutectic solvents (DESs), with their exceptional properties, offer a promising solution. These solvents can be tailored from a wide variety of hydrogen bond donors (HBDs) and acceptors (HBAs), making them highly customizable, cost-effective, and versatile.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Engineering Research Centre of Chemical Pollution Control, Mini
Polychlorinated phenols (PCPs) are persistent pollutants due to strong C-Cl bonds and toxicity, posing challenges for bioremediation. Although electron acceptor activation can facilitate degradation, the effect of chlorine-substituent positions on isomer-specific biodegradability remains unclear. To address this gap, dichlorophenols (DCPs) were selected as chlorine substitution patterns shape degradation kinetics and microbial responses.
View Article and Find Full Text PDF