A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Molecular-Switch-Embedded Organic Photodiode for Capturing Images against Strong Backlight. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When the intensity of the incident light increases, the photocurrents of organic photodiodes (OPDs) exhibit relatively early saturation, due to which OPDs cannot easily detect objects against strong backlights, such as sunlight. In this study, this problem is addressed by introducing a light-intensity-dependent transition of the operation mode, such that the operation mode of the OPD autonomously changes to overcome early photocurrent saturation as the incident light intensity passes the threshold intensity. The photoactive layer is doped with a strategically designed and synthesized molecular switch, 1,2-bis-(2-methyl-5-(4-cyanobiphenyl)-3-thienyl)tetrafluorobenzene (DAB). The proposed OPD exhibits a typical OPD performance with an external quantum efficiency (EQE) of <100% and a photomultiplication behavior with an EQE of >100% under low-intensity and high-intensity light illuminations, respectively, thereby resulting in an extension of the photoresponse linearity to a light intensity of 434 mW cm . This unique and reversible transition of the operation mode can be explained by the unbalanced quantum yield of photocyclization/photocycloreversion of the molecular switch. The details of the operation mechanism are discussed in conjunction with various photophysical analyses. Furthermore, they establish a prototype image sensor with an array of molecular-switch-embedded OPD pixels to demonstrate their extremely high sensitivity against strong light illumination.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202200526DOI Listing

Publication Analysis

Top Keywords

operation mode
12
incident light
8
transition operation
8
light intensity
8
molecular switch
8
light
5
molecular-switch-embedded organic
4
organic photodiode
4
photodiode capturing
4
capturing images
4

Similar Publications