Publications by authors named "Youbo Zhao"

Autoimmune hepatitis (AIH) is linked to an increased risk of hepatocellular carcinoma (HCC). However, the precise connection between the two remains unclear. GPR81, a G-protein-coupled receptor located on the membranes of various cell types, plays a role in numerous physiological processes.

View Article and Find Full Text PDF

T-cell immunotherapy holds tremendous promise for treating various types of cancer by boosting the infiltration and activity of T cells within tumor tissues. However, efficient recruitment of peripheral T cells to the tumor microenvironment (TME) remains a major clinical challenge. To address this limitation, here, we report an exosomal (EXO) immunotherapy for remodeling the immunosuppressive TME of hepatocellular carcinoma (HCC) into an immunosupportive state in a remotely controllable manner, for which the HCC-secreted exosomes are engineered with CXCL9 chemokine and cypate photothermal transducers (cypate@EXO-CXCL9).

View Article and Find Full Text PDF

Background & Aims: Both macrophages and T cells play a critical role in inflammatory bowel disease (IBD) development. Since our previous studies have shown that a novel immune checkpoint molecule erythrocyte membrane-associated protein (ERMAP) affects macrophage polarization and negatively regulates T cell responses, we investigated the effects of ERMAP on DSS-induced colitis progression in mice.

Methods: C57BL/6 mice developed a dextran sodium sulfate (DSS) colitis model, treated with control Fc protein (Control Ig) and ERMAP-Fc fusion protein (ERMAP-Ig) for 12 days to assess colitis severity by disease activity index (DAI), weight loss, colon length, histology, flow cytometry, Q-PCR, WB, ELISA, and the effect of adoptive transfer of ERMAP knockout mice (ERMAP) peritoneal macrophages on DSS colitis mice.

View Article and Find Full Text PDF

Tumors exploit immune checkpoints to evade immune responses. Therefore, targeting these checkpoints has become a key strategy in cancer immunotherapy. In this study, we have developed a novel immune checkpoint inhibitor (ICI) targeting the B7 family-related molecule BTN2A2.

View Article and Find Full Text PDF

Background: Within the tumor microenvironment, tumor cells undergo metabolic reprogramming of cholesterol due to intrinsic cellular alterations and changes in the extracellular milieu. Furthermore, cholesterol reprogramming within this microenvironment influences the immune landscape of tumors, facilitating immune evasion and consequently promoting tumorigenesis. These biological changes involve modifications in numerous enzymes associated with cholesterol uptake and synthesis, including NPC1L1, SREBP, HMGCR, SQLE, and PCSK9.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a central nervous system (CNS) autoimmune disease (AID) mediated by myelin-reactive CD4 T cells. Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of human MS. Erythrocyte membrane-associated protein (ERMAP) is a novel erythrocyte-specific adhesion/receptor molecule associated with erythrocyte adhesion.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are promising targets for improving anticancer treatment outcomes while eliminating recurrence, but their treatment remains a major challenge. Here, we report a nanointegrative strategy to realize CSC-targeted ferroptosis-immunotherapy through spatiotemporally controlled reprogramming of STAT3-regulated signaling circuits. Specifically, STAT3 inhibitor niclosamide (Ni) and an experimental ferroptosis drug (1, 3)-RSL3 (RSL3) are integrated into hyaluronic acid-modified amorphous calcium phosphate (ACP) nanounits through biomineralization (CaP-PEG-HA@Ni/RSL3), which could be recognized by CD44-overexpressing CSCs and released in a synchronized manner.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer stem cells (CSCs) with activated STAT3 play a crucial role in driving liver cancer (hepatocellular carcinoma or HCC), making them a significant target for treatment.
  • A new strategy utilizing a PROTAC-based approach has been developed to degrade STAT3, which not only inhibits CSC growth but also enhances the body's immune response against HCC.
  • The PROTAC prodrug is designed for targeted delivery using modified liposomes, and it works by taking advantage of elevated ROS levels in CSCs, effectively reshaping the tumor environment to support anti-cancer immunity.
View Article and Find Full Text PDF

Adoptive T-cell transfer for cancer therapy is limited by the inefficiency ofT-cell expansion and the ability ofT-cells to infiltrate tumors. The construction of multifunctional artificial antigen-presenting cells is a promising but challenging approach to achieve this goal. In this study, a multifunctional artificial antigen-presenting gel droplet (AAPGD) was designed.

View Article and Find Full Text PDF

Triple-negative breast cancer stem cells (TCSCs) are considered as the origin of recurrence and relapse. It is difficult to kill not only for its resistance, but also the lacking of targetable molecules on membrane. Here, it is confirmed that ST6 β-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal-1) is highly expressed in TCSCs that may be the key enzyme involved in glycoengineering via sialic acid (SA) metabolism.

View Article and Find Full Text PDF

Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield.

View Article and Find Full Text PDF

This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes.

View Article and Find Full Text PDF

The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity.

View Article and Find Full Text PDF

Radiotherapy is a mainstream modality for breast cancer treatment that employs ionizing radiation (IR) to damage tumor cell DNA and elevate ROS stress, which demonstrates multiple clinically-favorable advantages including localized treatment and low invasiveness. However, breast cancer cells may activate the p53-mediated cell cycle regulation in response to radiotherapy to repair IR-induced cellular damage and facilitate post-treatment survival. F-Box and WD Repeat Domain Containing 7 (FBXW7) is a promoter of p53 degradation and critical nexus of cell proliferation and survival events.

View Article and Find Full Text PDF

N6-methyladenosine modification is the most common RNA modification mechanism in mammals. YTHDF1, a mA reader, can recognize the mA of mRNAs to facilitate the interaction with the mRNA ribosome assembly and recruitment of translation initiators to promote translation. From a clinical perspective, YTHDF1 upregulation is frequently observed in breast cancer, but its involvement in those cancer-related events is still unclear.

View Article and Find Full Text PDF

Ferroptosis is an emerging antitumor option and has demonstrated unique advantages against many tumor indications. However, its efficacy is potentially hindered by the endogenous lipid peroxide-scavenging mechanisms and the reliance on acidic pH. Herein, a nanointegrated strategy based on clinically-safe components to synergistically remodel glutathione and lactate metabolism in tumor cells for enhanced ferroptosis therapy is developed.

View Article and Find Full Text PDF

Ferroptosis is a new form of regulated cell death with significant therapeutic prospect, but its application against drug-resistant tumor cells is challenging due to their ability to effuse antitumor agents via p-glycoprotein (P-gp) and anti-lipid peroxidation alkaline intracellular environment. Herein, an amorphous calcium phosphate (ACP)-based nanoplatform is reported for the targeted combinational ferroptosis/apoptosis therapy of drug resistant tumor cells by blocking the MCT4-mediated efflux of lactic acid (LA). The nanoplatform is fabricated through the biomineralization of doxorubicin-Fe (DOX-Fe ) complex and MCT4-inhibiting siRNAs (siMCT4) and can release them to the tumor cytoplasm after the hydrolysis of ACP and dissociation of DOX-Fe in the acidic lysosomes.

View Article and Find Full Text PDF

We report a high light-throughput spectroscopic dosimeter system that is able to noninvasively measure luminescence signals of singlet oxygen ( O ) produced during photodynamic therapy (PDT) using a CW (continuous wave) light source. The system is based on a compact, fiber-coupled, high collection efficiency spectrometer (>50% transmittance) designed to maximize optical throughput but with sufficient spectral resolution (~7 nm). This is adequate to detect O phosphorescence in the presence of strong luminescence background in vivo.

View Article and Find Full Text PDF

Nanocatalytic tumor therapy is an emerging antitumor option that employs catalytically-active inorganic nanostructures to produce tumor-damaging reactive oxygen species. However, initiation of nanocatalytic reactions in the tumor intracellular environment is a challenge due to the reliance on acidic pH. By exploiting the pH-selective multifaceted catalytic activities of Prussian blue-based nanomaterials (PBNM) as well as the hyperglycolysis characteristics of tumors, it is demonstrated that blocking the monocarboxylate transporter 4 (MCT4)-mediated lactate effusion in tumor cells can reverse the pH gradient across the tumor cell membrane and cause rapid intracellular acidification as well as neutralization of the extracellular compartment, thus creating vulnerabilities for PBNM-based nanocatalytic therapies in situ while suppressing tumor stemness/metastasis in vivo.

View Article and Find Full Text PDF

Ferroptosis is a recently discovered form of programed cell death caused by the metabolically regulated lipid peroxidation and holds promise for cancer treatment, but its regulatory mechanisms remain elusive. In this study, we observe that lactate-rich liver cancer cells exhibit enhanced resistance to the ferroptotic damage induced by common ferroptosis inducers such as Ras-selective lethal small molecule 3 (RSL3) and Erastin and that the monocarboxylate transporter 1 (MCT1)-mediated lactate uptake could promote ATP production in hepatocellular carcinoma (HCC) cells and deactivate the energy sensor AMP-activated protein kinase (AMPK), leading to the upregulation of sterol regulatory element-binding protein 1 (SREBP1) and the downstream stearoyl-coenzyme A (CoA) desaturase-1 (SCD1) to enhance the production of anti-ferroptosis monounsaturated fatty acids. Additionally, blocking the lactate uptake via hydroxycarboxylic acid receptor 1 (HCAR1)/MCT1 inhibition promotes ferroptosis by activating the AMPK to downregulate SCD1, which may synergize with its acyl-coenzyme A synthetase 4 (ACSL4)-promoting effect to amplify the ferroptotic susceptibility.

View Article and Find Full Text PDF

Significance: Photodynamic therapy (PDT) involves complex light-drug-pathophysiology interactions that can be affected by multiple parameters and often leads to large variations in treatment outcome from patient to patient. Direct PDT dosimetry technologies have been sought to optimize the control variables (e.g.

View Article and Find Full Text PDF

In this Letter, we report a low-cost, portable, two-photon excitation fluorescence microscopy imager that uses a fiber-based approach for both femtosecond supercontinuum (SC) generation and light delivery to the optical head. The SC generation is based on a tapered polarization-maintaining photonic crystal fiber that uses pre-chirped femtosecond narrowband pulses to generate a coherent SC spectrum with a bandwidth of approximately 300 nm. Using this approach, high-power, near-transform-limited, wavelength-selectable SC pulses are generated and directly delivered to the imaging optical head.

View Article and Find Full Text PDF

The high lactate production rate in hepatocellular carcinoma cells (HCC) have a profound impact on their malignant properties. In adaptation to the enhanced lactate stress, lactate-effusing monocarboxylate transporter 4(MCT4) is usually overexpressed in a broad range of HCC subtypes. In this study, the MCT4-mediated lactate efflux in HCC was blocked using microRNA-145(miR-145), which would force the endogenously generated lactate to accumulate within tumor cells in a self-regulated manner, resulting in the acidification of the cytoplasmic compartment as well as partial neutralization for pH in the tumor extracellular environment.

View Article and Find Full Text PDF

The platform described here combines the non-invasive measurement of the retina/choroid structure and ocular blood flow based on optical coherence tomography (OCT) and wide-field semi-quantitative global flow visualization using line-scanning Doppler flowmetry (LSDF). The combination of these two imaging modalities within the same platform enables comprehensive assessment of blood flow in the retina and choroid in animals and human subjects for diagnostic purposes. Ultra-widefield vasculature visualization is demonstrated here for the first time without injecting additional contrast agents and based only on the motion of particles within the vasculature.

View Article and Find Full Text PDF

To investigate the role of progesterone-induced micro-RNA (miR)-152 in early embryonic development and implantation by regulating GLUT3 in endometrial epithelium, qRT-PCR was used to detect the expression of miR-152, GLUT1, and GLUT3 in the endometrial epithelial cells of female mice. GLUT1 and GLUT3 proteins were detected by immunohistochemical staining in the mouse endometrial epithelium. Bioinformatics prediction associated with a luciferase assay was performed to determine whether GLUT1 and GLUT3 are target genes of miR-152.

View Article and Find Full Text PDF