PLoS Comput Biol
August 2025
RAF inhibitor "paradoxical activation" (PA) is a phenomenon where RAF kinase inhibitors increase RAF kinase signaling. Through mathematical modeling and experimental data analysis, we recently demonstrated that the combination of conformational autoinhibition (CA) with the disruption of CA by RAF inhibitors plays an important role in PA. 14-3-3 proteins are known to modulate RAF CA and RAF dimerization.
View Article and Find Full Text PDFExtracellular vesicles (EVs) hosting enzymatic activities that function as independent metabolic units are attractive natural biocatalytic platforms. However, directly using these metabolically active nanoreactors for effective biocatalytic applications remains challenging, mainly due to their constrained catalytic capabilities. Here, we construct an EV-templated nanobiohybrid system by engineering an EV surface with a photoresponsive zeolitic imidazolate framework (ZIF).
View Article and Find Full Text PDFPathogenic gut microbiota is responsible for a few debilitating gastrointestinal diseases. While the host immune cells do produce extracellular vesicles to counteract some deleterious effects of the microbiota, the extracellular vesicles are of insufficient doses and at unreliable exposure times. Here we use mechanical stimulation of hydrogel-embedded macrophage in a bioelectronic controller that on demand boost production of up to 20 times of therapeutic extracellular vesicles to ameliorate the microbes' deleterious effects in vivo.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2023
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics.
View Article and Find Full Text PDFAnimals evolved two defense strategies to survive infections. Antagonistic strategies include immune resistance mechanisms that operate to kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens.
View Article and Find Full Text PDFAnimals have evolved two defense strategies to survive infections. Antagonistic strategies include mechanisms of immune resistance that operate to sense and kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens.
View Article and Find Full Text PDFOncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing.
View Article and Find Full Text PDFTumor blood vessels exhibit morphological and functional aberrancies. Its maturity and functionality are closely associated with colon cancer progression and therapeutic efficacy. The direct evidence proving whether oridonin (ORI) has vascular normalization promoting effect from which combination therapies will benefit is still lacking.
View Article and Find Full Text PDFJ Toxicol Pathol
January 2021
Glioblastoma (GBM) is a highly aggressive central nervous system cancer. Its extracranial metastases have rarely been reported in the past few decades. Moreover, the pathogenesis of extracranial GBM metastases remains unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay.
View Article and Find Full Text PDFOncogenic RAS mutations drive cancers at many sites. Recent reports suggest that RAS dimerization, multimerization, and clustering correlate strongly with activation of RAS signaling. We have found that re-expression of DIRAS3, a RAS-related small GTPase tumor suppressor that is downregulated in multiple cancers, inhibits RAS/mitogen-activated protein kinase (MAPK) signaling by interacting directly with RAS-forming heteromers, disrupting RAS clustering, inhibiting Raf kinase activation, and inhibiting transformation and growth of cancer cells and xenografts.
View Article and Find Full Text PDFA flexible chalcogenide fiber bundle (FB) with a resolution as high as ~31 lp/mm has been fabricated for delivering thermal images of objects at room temperature. The FB is composed of ~200,000 single fibers with a Ge-As-Te-Se glass core 15 μm in diameter and a polyetherimide (PEI) cladding 16.8 μm in diameter.
View Article and Find Full Text PDFOpt Express
December 2016
Using a home-made black phosphorus plate (BPP) as handedness controller and Q-switch modulator synchronously, a ~1.6 µm pulsed vortex laser with well-determined handedness is demonstrated in this letter. Stable vortex pulses of LG, LG, LG and LG modes were respectively achieved from compact resonant cavities in this experiment.
View Article and Find Full Text PDFBH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2016
Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs).
View Article and Find Full Text PDFProtein-protein interactions (PPIs) play central roles in orchestrating biological processes. While some PPIs are stable, many important ones are transient and hard to detect with conventional approaches. We developed ReBiL, a recombinase enhanced bimolecular luciferase complementation platform, to enable detection of weak PPIs in living cells.
View Article and Find Full Text PDFFunctional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO) cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation.
View Article and Find Full Text PDFThe MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges.
View Article and Find Full Text PDFIn this issue of Cancer Cell, Gannon and colleagues create genetically engineered mice to test the role phosphorylation plays in the modification of one serine long thought to play a critical role in controlling the activity of MDM2, one of p53's main negative regulators.
View Article and Find Full Text PDFThe yeast Sir2/3/4 complex forms a heterochromatin-like structure that represses transcription. The proteins nucleate at silencers and spread distally, utilizing the Sir2 NAD(+)-dependent histone deacetylase activity and the affinity of Sir3/4 for deacetylated histone tails. A by-product of the Sir2 reaction, O-acetyl-ADP-ribose (OAADPr), is thought to aid spreading by binding one of the Sir proteins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2007
P53 regulates numerous downstream targets to induce cell cycle arrest, senescence, apoptosis, and DNA repair in response to diverse stresses. Hdm2 and Hdmx are critical negative regulators of P53 because Hdm2 regulates P53 abundance, and both can antagonize P53 transactivation. Modest changes in Hdm2 or Hdmx abundance affect P53 regulation, yet quantitative information regarding their endogenous intracellular concentrations and subcellular distributions during a stress response are lacking.
View Article and Find Full Text PDFComparative analysis of mutants using transfection is complicated by clones exhibiting variable levels of gene expression due to copy number differences and genomic position effects. Recombinase-mediated cassette exchange (RMCE) can overcome these problems by introducing the target gene into pre-determined chromosomal loci, but recombination between the available recombinase targeting sites can reduce the efficiency of targeted integration. We developed a new LoxP site (designated L3), which when used with the original LoxP site (designated L2), allows highly efficient and directional replacement of chromosomal DNA with incoming DNA.
View Article and Find Full Text PDF