Am J Hum Genet
September 2024
A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have identified many sources of genetic variation associated with bone mineral density (BMD), a clinical predictor of fracture risk and osteoporosis. Aside from the identification of causal genes, other difficult challenges to informing GWAS include characterizing the roles of predicted causal genes in disease and providing additional functional context, such as the cell type predictions or biological pathways in which causal genes operate. Leveraging single-cell transcriptomics (scRNA-seq) can assist in informing BMD GWAS by linking disease-associated variants to genes and providing a cell type context for which these causal genes drive disease.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) have advanced our understanding of the genetics of osteoporosis; however, the challenge has been converting associations to causal genes. Studies have utilized transcriptomics data to link disease-associated variants to genes, but few population transcriptomics data sets have been generated on bone at the single-cell level. To address this challenge, we profiled the transcriptomes of bone marrow-derived stromal cells (BMSCs) cultured under osteogenic conditions from five diversity outbred (DO) mice using single-cell RNA-seq (scRNA-seq).
View Article and Find Full Text PDFA major fraction of loci identified by genome-wide association studies (GWASs) lead to alterations in alternative splicing, but interpretation of how such alterations impact proteins is hindered by the technical limitations of short-read RNA-seq, which cannot directly link splicing events to full-length transcript or protein isoforms. Long-read RNA-seq represents a powerful tool to define and quantify transcript isoforms, and recently, infer protein isoform existence. Here we present a novel approach that integrates information from GWAS, splicing QTL (sQTL), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode.
View Article and Find Full Text PDFThere are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs.
View Article and Find Full Text PDFAn increase in opioid-overdose deaths was evident before the COVID-19 pandemic, and has escalated since its onset. Fentanyl, a highly potent synthetic opioid, is the primary driver of these recent trends. The current study used two inbred mouse strains, C57BL/6 J and A/J, to investigate the genetics of behavioral responses to fentanyl.
View Article and Find Full Text PDFGenome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2.
View Article and Find Full Text PDFBone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.
View Article and Find Full Text PDFOsteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology.
View Article and Find Full Text PDFBone mineral density (BMD) is a strong predictor of osteoporotic fracture. It is also one of the most heritable disease-associated quantitative traits. As a result, there has been considerable effort focused on dissecting its genetic basis.
View Article and Find Full Text PDFBone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. Genome-wide association studies (GWAS) for BMD have identified dozens of associations; yet, the genes responsible for most associations remain elusive. Here, we used a bone co-expression network to predict causal genes at BMD GWAS loci based on the premise that genes underlying a disease are often functionally related and functionally related genes are often co-expressed.
View Article and Find Full Text PDFThe postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains.
View Article and Find Full Text PDFMethods Mol Biol
January 2016
The identification and isolation of origins of replication from mammalian genomes has been a demanding task owing to the great complexity of these genomes. However, two methods have been refined in recent years each of which allows significant enrichment of recently activated origins of replication from asynchronous cell cultures. In one of these, nascent strands are melted from the long template DNA, and the small, origin-centered strands are isolated on sucrose gradients.
View Article and Find Full Text PDFIn order to perform 2-D gel analyses on restriction fragments from higher eukaryotic genomes, it is necessary to remove most of the linear, nonreplicating, fragments from the starting DNA preparation. This is so because the replication intermediates in a single-copy locus constitute such a minute fraction of all of the restriction fragments in a standard DNA preparation-whether isolated from synchronized or asynchronous cultures. Furthermore, the very long DNA strands that characterize higher eukaryotic genomes are inordinately subject to branch migration and shear.
View Article and Find Full Text PDFJ Clin Invest
June 2014
Patient bone mineral density (BMD) predicts the likelihood of osteoporotic fracture. While substantial progress has been made toward elucidating the genetic determinants of BMD, our understanding of the factors involved remains incomplete. Here, using a systems genetics approach in the mouse, we predicted that bicaudal C homolog 1 (Bicc1), which encodes an RNA-binding protein, is responsible for a BMD quantitative trait locus (QTL) located on murine chromosome 10.
View Article and Find Full Text PDFCryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e.
View Article and Find Full Text PDFWe have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity.
View Article and Find Full Text PDFWe have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.
View Article and Find Full Text PDFThe heterochromatin-associated H3K9 tri-methylase Suv39h1 is involved in the permanent silencing of E2F target genes in differentiating but not in quiescent cells. Here, we tested the hypothesis that permanent silencing of E2F target genes is associated with their subnuclear positioning close to the pericentromeric heterochromatin compartment, enriched in Suv39h1. Using fluorescence in situ hybridization, we analyzed the subnuclear localization of three E2F target genes relative to the pericentromeric heterochromatin, in cycling fibroblasts or differentiating myoblasts.
View Article and Find Full Text PDFStudies in our laboratory over the last three decades have shown that the Chinese hamster dihydrofolate reductase (DHFR) origin of replication corresponds to a broad zone of inefficient initiation sites distributed throughout the spacer between the convergently transcribed DHFR and 2BE2121 genes. It is clear from mutational analysis that none of these sites is genetically required for controlling origin activity. However, the integrity of the promoter of the DHFR gene is needed to activate the downstream origin, while the 3' processing signals prevent invasion and inactivation of the downstream origin by transcription forks.
View Article and Find Full Text PDFMethods Mol Biol
August 2009
The identification and isolation of origins of replication from mammalian genomes has been a demanding task owing to the great complexity of these genomes. However, two methods have been refined in recent years each of which allows significant enrichment of recently activated origins of replication from asynchronous cell cultures. In one of these, nascent strands are melted from the long template DNA, and the small, origin-centered strands are isolated on sucrose gradients.
View Article and Find Full Text PDFIn order to perform 2-D gel analyses on restriction fragments from higher eukaryotic genomes, it is necessary to remove most of the linear, nonreplicating, fragments from the starting DNA preparation. This is so because the replication intermediates in a single-copy locus constitute such a minute fraction of all of the restriction fragments in a standard DNA preparation - whether isolated from synchronized or asynchronous cultures. Furthermore, the very long DNA strands that characterize higher eukaryotic genomes are inordinately subject to branch migration and shear.
View Article and Find Full Text PDFBecause of the complexity of higher eukaryotic genomes and the lack of a reliable autonomously replicating sequence (ARS) assay for isolating potential replicators, the identification of origins has proven to be extremely challenging and time consuming. We have developed a new origin-trapping method based on the partially circular nature of restriction fragments containing replication bubbles and have prepared a library of approximately 1,000 clones from early S phase CHO cells. When 15 randomly selected clones were analyzed by a stringent two-dimensional (2D) gel replicon mapping method, all were shown to correspond to active, early firing origins.
View Article and Find Full Text PDFComparative analysis of mutants using transfection is complicated by clones exhibiting variable levels of gene expression due to copy number differences and genomic position effects. Recombinase-mediated cassette exchange (RMCE) can overcome these problems by introducing the target gene into pre-determined chromosomal loci, but recombination between the available recombinase targeting sites can reduce the efficiency of targeted integration. We developed a new LoxP site (designated L3), which when used with the original LoxP site (designated L2), allows highly efficient and directional replacement of chromosomal DNA with incoming DNA.
View Article and Find Full Text PDF