Maintaining therapeutic plasma tacrolimus concentrations is essential for mitigating potential solid organ transplant rejection and preventing toxic adverse side effects. While patients can benefit greatly from tacrolimus therapy, co-administration of drugs such as Paxlovid (nirmatrelvir/ritonavir) place patients at serious risk for drug interactions and harm. Here we present a case of tacrolimus toxicity following Paxlovid administration in a liver transplant patient.
View Article and Find Full Text PDFBackground: Clozapine is a first-line therapy and the only FDA-approved drug for patients with treatment-resistant schizophrenia (TRS). However, frequent measurement of absolute neutrophil count (ANC) is required to monitor for potential adverse severe neutropenia from clozapine therapy. We evaluated 3 point-of-care (POC) instruments that perform the complete blood count (CBC) with differential to assess their analytical performance and potential to meet the clinical need for clozapine therapy management.
View Article and Find Full Text PDFCanonical nuclear factor κB (NF-κB) signaling mediated by homo- and heterodimers of the NF-κB subunits p65 (RELA) and p50 (NFKB1) is associated with age-related pathologies and with disease progression in posttraumatic models of osteoarthritis (OA). Here, we established that NF-κB signaling in articular chondrocytes increased with age, concomitant with the onset of spontaneous OA in wild-type mice. Chondrocyte-specific expression of a constitutively active form of inhibitor of κB kinase β (IKKβ) in young adult mice accelerated the onset of the OA-like phenotype observed in aging wild-type mice, including degenerative changes in the articular cartilage, synovium, and menisci.
View Article and Find Full Text PDFGiven the prevalence and the scope of the personal and societal burden of osteoarthritis (OA), investigators continue to be deeply interested in understanding the pathogenic basis of disease and developing novel disease modifying OA therapies. Because joint trauma/injury is considered a leading predisposing factor in the development of OA, and since posttraumatic OA is one of the most common forms of OA in general, large animal and rodent models of knee injury that accurately recapitulate the OA disease process have become increasingly widespread over the past decade. To enable study in the context of defined genetic backgrounds, investigative teams have developed standardized protocols for injuring the mouse knee that aim to induce a reproducible degenerative process both in terms of severity and temporal pacing of disease progression.
View Article and Find Full Text PDFOsteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2019
Osteoporosis is a complex genetic disease in which the number of loci associated with the bone mineral density, a clinical risk factor for fracture, has increased at an exponential rate in the last decade. The identification of the causative variants and candidate genes underlying these loci has not been able to keep pace with the rate of locus discovery. A large number of tools and data resources have been built around the use of the mouse as model of human genetic disease.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative joint disease for which there are no disease modifying therapies. Thus, strategies that offer chondroprotective or regenerative capability represent a critical unmet need. Recently, oral consumption of a hydrolyzed type 1 collagen (hCol1) preparation has been reported to reduce pain in human OA and support a positive influence on chondrocyte function.
View Article and Find Full Text PDFGiven the prevalence and the scope of the personal and societal burden of OA, investigators have become increasingly interested in understanding the pathogenic basis of disease and developing novel disease-modifying OA therapies. Because of the well-documented central role that joint trauma plays in the initiation of knee OA, large animal and rodent models of knee injury that accurately recapitulate the OA disease process have become increasingly widespread over the past decade. To enable study in the context of defined genetic backgrounds, investigative teams have informally developed standardized protocols for injuring the mouse knee that aim to induce a reproducible degenerative process both in terms of severity and temporal pacing of disease progression.
View Article and Find Full Text PDFSince transforming growing factor-β (TGF-β)/Smad signaling inhibits chondrocyte maturation, endogenous negative regulators of TGF-β signaling are likely also important regulators of the chondrocyte differentiation process. One such negative regulator, Ski, is an oncoprotein that is known to inhibit TGF-β/Smad3 signaling via its interaction with phospho-Smad3 and recruitment of histone deacetylases (HDACs) to the DNA binding complex. Based on this, we hypothesized that Ski inhibits TGF-β signaling and accelerates maturation in chondrocytes via recruitment of HDACs to transcriptional complexes containing Smads.
View Article and Find Full Text PDF