Publications by authors named "Xingyong Wu"

Melioidosis is a zoonotic disease, with its outbreaks being rare and indicative of an unusual concurrence of extreme climate and natural environmental factors. An outbreak of melioidosis cases emerged in Hainan following Typhoon "Dianmu" from October to December 2021, presenting an opportunity to identify the environmental sources of infection for these cases due to its nature as a well-defined point-source cluster. To investigate the relationship between the occurrence of these melioidosis cases and the environment, we extracted the entire genome of 25 clinical strains and conducted MLST typing, followed by whole genome sequencing and analysis of molecular genetic information for four ST46 genotypes from these strains.

View Article and Find Full Text PDF

In a clinical isolate of Burkholderia pseudomallei from Hainan, the association between the emergence of ceftazidime resistance and a novel PenA P174L allele was identified for the first time, providing an understanding of one mechanism by which ceftazidime resistance arises in B. pseudomallei.

View Article and Find Full Text PDF

Background: Burkholderia pseudomallei is a tropical pathogen that causes melioidosis. Its intrinsic drug-resistance is a leading cause of treatment failure, and the few available antibiotics require prolonged use to be effective. This study aimed to assess the clinical potential of B.

View Article and Find Full Text PDF

Background: The emergence of antimicrobial resistance against Mycobacterium tuberculosis (M. tuberculosis) has become the major concern in global tuberculosis control due to its limited therapy options and high mortality. However, the clinical and molecular characteristics of drug-resistant strains vary in different geographical areas.

View Article and Find Full Text PDF

Many diseases, including cancers, AIDS, diabetes, asthma, Parkinson's, and lymphoma, are associated with the immune cell responses of patients suffering from them. Identifying the underlying immune response in such diseases is critical to correctly diagnose their root cause and determine the correct medications to target that root cause for personal therapy and immunotherapy. This work focuses on small molecular CF dyes to conjugate with antibodies, such as CD4 and CD19, for their application in flow cytometry.

View Article and Find Full Text PDF

Because precision medicine is highly dependent on the accurate detection of biomarkers, there is an increasing need for standardized and robust technologies that measure RNA biomarkers in situ in clinical specimens. While grind-and-bind assays like RNAseq and quantitative RT-PCR enable highly sensitive gene expression measurements, they also require RNA extraction and thus prevent valuable expression analysis within the morphological tissue context. The in situ hybridization (ISH) assay described here can detect RNA target sequences as short as 50 nucleotides at single-nucleotide resolution and at the single-cell level.

View Article and Find Full Text PDF

Intra-tumor heterogeneity (ITH) is a major underlying cause of therapy resistance and disease recurrence, and is a read-out of tumor growth. Current genetic ITH analysis methods do not preserve spatial context and may not detect rare subclones. Here, we address these shortfalls by developing and validating BaseScope-a novel mutation-specific RNA in situ hybridization assay.

View Article and Find Full Text PDF

Background: Androgen receptor splice variant 7 (AR-V7) has been implicated in resistance to abiraterone and enzalutamide treatment in men with metastatic castration-resistant prostate cancer (mCRPC). Tissue- or cell-based in situ detection of AR-V7, however, has been limited by lack of specificity.

Objective: To address current limitations in precision measurement of AR-V7 by developing a novel junction-specific AR-V7 RNA in situ hybridization (RISH) assay compatible with automated quantification.

View Article and Find Full Text PDF

Biomarkers such as DNA, RNA, and protein are powerful tools in clinical diagnostics and therapeutic development for many diseases. Identifying RNA expression at the single cell level within the morphological context by RNA in situ hybridization provides a great deal of information on gene expression changes over conventional techniques that analyze bulk tissue, yet widespread use of this technique in the clinical setting has been hampered by the dearth of automated RNA ISH assays. Here we present an automated version of the RNA ISH technology RNAscope that is adaptable to multiple automation platforms.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (SCC) is a unique form of carcinoma that is important to identify for prognosis and treatment. Immunohistochemistry (IHC) for p16 (also known as cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1) is used as a surrogate marker for transcriptionally active, high-risk HPV. The primary objective of this study was to correlate p16 IHC of cell blocks from fine-needle aspirations (FNAs) with surgical pathology specimens of HPV-related oropharyngeal SCC.

View Article and Find Full Text PDF

RNA in situ hybridization (ISH) can provide valuable morphological context for molecular markers on one hand and enable morphological analysis in molecular context on the other hand. It has become increasingly important, thanks to increasing interest in new biomarkers and noncoding RNAs in both research and clinical applications. We have developed an ultrasensitive RNA ISH technology, RNAscope, employing a unique probe design strategy that allows target-specific signal amplification while suppressing background noise.

View Article and Find Full Text PDF

In situ hybridization (ISH) techniques have been important to the study of gene expression signatures in cells and tissues. The ability to detect multiple targets simultaneously is especially valuable, since it allows dissecting gene expression of distinct cell types with precise cellular and subcellular resolution within morphological context. Recently, we have reported using a novel dual-color ultrasensitive bright-field RNA in situ hybridization for detection of clonally restricted immunoglobulin light chain mRNA expression in B cell lymphomas.

View Article and Find Full Text PDF

The 'gold standard' for oncogenic HPV detection is the demonstration of transcriptionally active high-risk HPV in tumor tissue. However, detection of E6/E7 mRNA by quantitative reverse transcription polymerase chain reaction (qRT-PCR) requires RNA extraction which destroys the tumor tissue context critical for morphological correlation and has been difficult to be adopted in routine clinical practice. Our recently developed RNA in situ hybridization technology, RNAscope, permits direct visualization of RNA in formalin-fixed, paraffin-embedded (FFPE) tissue with single molecule sensitivity and single cell resolution, which enables highly sensitive and specific in situ analysis of any RNA biomarker in routine clinical specimens.

View Article and Find Full Text PDF

Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL).

View Article and Find Full Text PDF

Purpose: Quantification of mRNA has historically been done by reverse transcription polymerase chain reaction (RT-PCR). Recently, a robust method of detection of mRNA utilizing in situ hybridization has been described that is linear and shows high specificity with low background. Here we describe the use of the AQUA method of quantitative immunofluorescence (QIF) for measuring mRNA in situ using ESR1 (the estrogen receptor alpha gene) in breast cancer to determine its predictive value compared to Estrogen Receptor α (ER) protein.

View Article and Find Full Text PDF

In situ analysis of biomarkers is highly desirable in molecular pathology because it allows the examination of biomarker status within the histopathological context of clinical specimens. Immunohistochemistry and DNA in situ hybridization (ISH) are widely used in clinical settings to assess protein and DNA biomarkers, respectively, but clinical use of in situ RNA analysis is rare. This disparity is especially notable when considering the abundance of RNA biomarkers discovered through whole-genome expression profiling.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are among the most promising emerging fluorescent labels for cellular imaging. However, it is unclear whether QDs, which are nanoparticles rather than small molecules, can specifically and effectively label molecular targets at a subcellular level. Here we have used QDs linked to immunoglobulin G (IgG) and streptavidin to label the breast cancer marker Her2 on the surface of fixed and live cancer cells, to stain actin and microtubule fibers in the cytoplasm, and to detect nuclear antigens inside the nucleus.

View Article and Find Full Text PDF