ConspectusThe ability to detect and image nanomaterials at interfaces is crucial for a wide range of applications, from the engineering and characterization of nanocomposites to enabling label-free detection for biomedical diagnostics and therapy. Light microscopy, which relies on the optical properties of nanomaterials, has significantly contributed to this goal due to its adequate temporal and spatial resolutions and compatibility with diverse application scenarios. However, the optical intensity readout of these label-free optical imaging techniques inherently limits their selectivity.
View Article and Find Full Text PDFReal-time visualization of nanoscale chemical transformations is critical to understanding morphological dynamics that influence catalytic and material properties; however, conventional optical methods remain limited by shallow penetration depths and persistent imaging artifacts. Here, we present low-angle rotational interferometric scattering microscopy (LRISM), a label-free imaging approach that achieves artifact-free, high-contrast imaging with high depths (>6 μm) into bulk solutions. By rapidly modulating the azimuthal angle of illumination, LRISM eliminates interference artifacts and extends imaging depth into the bulk solution.
View Article and Find Full Text PDFThe sustainable transformation and management of dissolved organic matter (DOM) are crucial for advancing organic waste treatment towards resource-oriented processes. However, the intricate molecular complexity of DOM poses significant challenges, impeding a comprehensive understanding of the underlying biochemical processes. Here, we focus on the chemical "dark matter" mining using ultra-high resolution mass spectrometry technologies to elucidate the molecular diversity and transformation in anaerobic bioprocessing of food waste.
View Article and Find Full Text PDFUnderstanding the electrical double layer (EDL) at solid-liquid interfaces is pivotal across various fields, including energy storage, electrowetting, and electrocatalysis, yet probing its structure and heterogeneity remains a considerable challenge. Here, we report an optical method for the direct visualization and quantification of the zeta potential (ζ) across the interfaces between 2D materials and aqueous solutions. By modulating surface charge density, we map the heterogenous distribution of ζ potential across the MoS nanosheet interface, revealing how both external factors and intrinsic material properties shape interfacial charge.
View Article and Find Full Text PDFUnderstanding the dynamic transformation processes of electrocatalysts during electrochemical reactions is crucial for the development of advanced materials for energy conversion and storage, yet it remains a challenge. Herein, we report the real-time monitoring of the dynamic transformation of a series of layered Sn chalcogenides during electrochemical reduction using a plasmonic imaging method. Taking SnSe as an example, we observed a strong firework-like emission diffusing outward from SnSe to the surrounding solution under a negative potential.
View Article and Find Full Text PDFUnderstanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique.
View Article and Find Full Text PDFPartial DNA duplex formation greatly impacts the quality of DNA hybridization and has been extensively studied due to its significance in many biological processes. However, traditional DNA sensing methods suffer from time-consuming amplification steps and hinder the acquisition of information about single-molecule behavior. In this work, we developed a plasmonic method to probe the hybridization process at a single base pair resolution and study the relationship between the complementarity of DNA analytes and DNA hybridization behaviors.
View Article and Find Full Text PDFMicrobially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency.
View Article and Find Full Text PDFWater Res
September 2023
Direct visualization of surface chemical dynamics in solution is essential for understanding the mechanisms involved in nanocatalysis and electrochemistry; however, it is challenging to achieve high spatial and temporal resolution. Here, we present an azimuth-modulated plasmonic imaging technique capable of imaging dynamic interfacial changes. The method avoids strong interference from reflected light and consequently eliminates the parabolic-like interferometric patterns in the images, allowing for a 67-fold increase in the spatial resolution of plasmonic imaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
Imaging nanoscale objects at interfaces is essential for revealing surface-tuned mechanisms in chemistry, physics, and life science. Plasmonic-based imaging, a label-free and surface-sensitive technique, has been widely used for studying the chemical and biological behavior of nanoscale objects at interfaces. However, direct imaging of surface-bonded nanoscale objects remains challenging due to uneven image backgrounds.
View Article and Find Full Text PDFSci Total Environ
May 2023
Dissolved organic matter (DOM) is ubiquitous in aqueous environments and is composed of different components that play different but important roles in the migration and the fate of pollutants, emergence of the disinfect byproduct, thus requiring quantitative characterization. However, until now, simultaneous quantification of the main contents in DOM, i.e.
View Article and Find Full Text PDFNano Lett
January 2023
Measurement of electron transfer at the single-particle or -cell level is crucial to the study of basic chemical and biological processes. However, it remains challenging to directly probe the microbial extracellular electron transfer process due to the weakness of signals and the lack of techniques. Here, we present a label-free and noninvasive imaging method that is able to measure the electron transfer in microbial cells.
View Article and Find Full Text PDFNat Commun
December 2022
Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalysts remains a great challenge due to the lack of in situ imaging techniques and methods of tuning structures with atomic precision. Here, we present a general method of probing the layer-dependent electrocatalytic activity of 2D materials in situ using a plasmonic imaging technique.
View Article and Find Full Text PDFWorld J Clin Cases
November 2022
Background: There are a few cases of lateral lymph node (LLN) metastasis (LLNM) of T1 rectal cancer. Moreover, LLNM is easily missed, especially in patients with early-stage rectal cancer. To our knowledge, the possibility of bilateral LLNM before surgery has not been reported in previous studies.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2022
Probing the interfacial dynamics of single bacterial cells in complex environments is crucial for understanding the microbial biofilm formation process and developing antifouling materials, but it remains a challenge. Here, we studied single bacterial interfacial behaviors modulated by surfactants via a plasmonic imaging technique. We quantified the adhesion strength of single bacterial cells by plasmonic measurement of potential energy profiles and dissected the mechanism of surfactant-tuned single bacterial adhesion.
View Article and Find Full Text PDFRemoval of organic micropollutants from water through advanced oxidation processes (AOPs) is hampered by the excessive input of energy and/or chemicals as well as the large amounts of residuals resulting from incomplete mineralization. Herein, we report a new water purification paradigm, the direct oxidative transfer process (DOTP), which enables complete, highly efficient decontamination at very low dosage of oxidants. DOTP differs fundamentally from AOPs and adsorption in its pollutant removal behavior and mechanisms.
View Article and Find Full Text PDFReal-time probing of the compositional evolution of single nanoparticles during an electrochemical reaction is crucial for understanding the structure-performance relationship and rationally designing nanomaterials for desirable applications; however, it is consistently challenging to achieve high-throughput real-time tracking. Here, we present an optical imaging method, termed plasmonic scattering interferometry microscopy (PSIM), which is capable of imaging the compositional evolution of single nanoparticles during an aqueous electrochemical reaction in real time. By quantifying the plasmonic scattering interferometric pattern of nanoparticles, we establish the relationship between the pattern and composition of single nanoparticles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Dissolution of nanoparticles is an environmental interfacial process that affects the transformation of nanoparticles. Understanding the dissolution processes of nanoparticles is important to predict their fate in the aquatic environment. However, studying nanoparticle dissolution kinetics is still challenging since dissolution is usually coupled with nanoparticle aggregation.
View Article and Find Full Text PDFBackground: Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive.
View Article and Find Full Text PDFIn this work we briefly reviewed the genus Gryllacris with some notes on taxonomic issues, note the taxa that have been described in and transferred to the genus and describe a new taxon, Gryllacris (Gryllacris) stylommatoprocera, from Yunnan, China. Materials are deposited in Shanghai Entomological Museum, Chinese Academy of Sciences.
View Article and Find Full Text PDFBioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency.
View Article and Find Full Text PDF