Publications by authors named "Wenhui Cheng"

Plasmonic nanocrystals represent one of the most fascinating emerging research fields and hold great promise for a wide range of new applications, including surface-enhanced Raman spectroscopy (SERS) and plasmon-related devices. Here, we present a mesocrystal consisting of 3D Ag nanocrystals (NCs) with the same orientation intercalated in a 2D muscovite crystal via a two-step hydrothermal process for a novel SERS platform. The fabricated Ag NCs/mica mesocrystal possesses high crystallinity, uniform size, and extensive distribution to benefit the SERS-active plasmon area and strong plasmon resonance in the visible spectral range.

View Article and Find Full Text PDF

Objective: This study aimed to develop a risk prediction model for post-treatment oligometastasis in nasopharyngeal carcinoma (NPC) by integrating pathomics features and an improved Support vector machine (SVM) algorithm, offering precise early decision support.

Methods: This study retrospectively included 462 NPC patients, without or with oligometastasis defined by ESTRO/EORTC criteria. Whole-slide images were scanned, and three representative H&E-stained regions were selected for pathomics feature extraction via CellProfiler software.

View Article and Find Full Text PDF

Skeletal muscle is the major tissue for metabolic activity in the body and performs a variety of physiological functions. Among these, muscle fiber types are decisive in muscle function and meat quality. Numerous studies have shown that natural products can affect the development of skeletal muscle, regulate the formation of muscle fibers, and impact muscle function under physiological or pathological conditions.

View Article and Find Full Text PDF

Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science.

View Article and Find Full Text PDF

The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the gene in regulating plant growth and adaptation to environmental stress has become a hot research topic.

View Article and Find Full Text PDF

The realization of higher coupling strengths between coupled resonant modes enables exploration of compelling phenomena in diverse fields of physics and chemistry. In this study, we focus on the modal coupling between localized surface plasmon resonance (LSPR) of Au nanoparticles (Au-NPs) and Fabry-Pérot mode (p-NiO/Au film). The effects of nanoparticle size, projected surface coverage (PSC), interparticle distance (IPD), and arrangement to the coupling strength between the two modes are theoretically investigated using finite-difference time-domain (FDTD) method.

View Article and Find Full Text PDF

Sinomenium acutum (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties.

View Article and Find Full Text PDF

Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis .

View Article and Find Full Text PDF

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment.

View Article and Find Full Text PDF

A ratiometric sensor with ultralow background is highly desired due to its low environmental influence and high sensitivity. Herein, inspired by the solubility difference of carboxylate in aqueous and organic solvents, we prepared a core-shell structure porous zirconia-covalent organic framework (COF) composite through thermal hydrolysis of UiO-66-COF precursors in organic alkali solution. The ligand 2-aminoterephthalic acids (HBDC-NH) of UiO-66 were transformed into 2-aminoterephthalate salts (ATA salts) that existed in zirconium-oxo clusters building units.

View Article and Find Full Text PDF

is the main pathogen causing bacterial fruit blotch, which seriously threatens the global watermelon industry. At present, rapid, sensitive, and low-cost detection methods are urgently needed. The established CRISPR/LbCas12a visual detection method can specifically detect and does not cross-react with other pathogenic bacteria such as , , and .

View Article and Find Full Text PDF

Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials.

View Article and Find Full Text PDF

Background: Cell death is a key regulatory process in organisms and its study has become increasingly important in the field of cancer. While prior research has primarily centered on the individual pathways of cell death in cancer, there has been a lack of comprehensive investigation into the synergistic effects of multiple cell death pathways.

Methods: Genes related to autophagy, apoptosis, necroptosis, pyroptosis, and cuproptosis was selected, and patients' data was collected from The Cancer Genome Atlas (TCGA)project.

View Article and Find Full Text PDF

The electrochemical reduction of carbon dioxide (CO) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@CuO/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO adsorption and the abundance of active sites contribute to the increased electrocatalytic activity.

View Article and Find Full Text PDF

The gene family plays a crucial role in the cleavage of carotenoids, converting them into apocarotenoids. This process not only impacts the physiology and development of plants but also enhances their tolerance toward different stresses. However, the character of the gene family and its role in ornamental woody remain unclear.

View Article and Find Full Text PDF

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified.

View Article and Find Full Text PDF

The development of agriculture and industry has led to a gradual increase in the levels of cadmium (Cd) in the soil, which, due to its high mobility in soil, makes Cd deposition in plants a serious threat to the health of animals and humans. The important role of melatonin (MT) in regulating plant growth and adaptation to environmental stress has become a pertinent research topic, but the mechanisms of action of MT in Cd-stressed Platycladus orientalis seedlings are unclear. Here, we investigated the mitigation mechanism of exogenous MT application on P.

View Article and Find Full Text PDF

Herbal medicines have greatly contributed to human health worldwide for thousands of years. In particular, traditional Chinese medicine plays an essential role in the prevention and treatment of COVID-19. With the exponentially increasing use and global attention to herbal medicinal products (HMPs), efficacy and safety have become major public concerns in many countries.

View Article and Find Full Text PDF

(Aux/IAAs), an early auxin-responsive gene family, is important for plant growth and development. To fully comprehend the character of genes in woody plants, we identified 19 genes in and dissected their protein domains, phylogenetic relationship, gene structure, promoter, and expression patterns during floral bud flushing, auxin response, and abiotic stress response. The study showed that PmIAA proteins shared conserved Aux/IAA domain, but differed in protein motif composition.

View Article and Find Full Text PDF

According to statistics released by the WHO, China has the highest prevalence of myopia in the world, with a frequency that is 1.5 times higher than the global average. Asians have the highest prevalence of myopia worldwide.

View Article and Find Full Text PDF

The Gibberellic Acid Stimulated Arabidopsis/Gibberellin Stimulated Transcript (GASA/GAST) gene family is a group of plant-specific genes encoding cysteine-rich peptides essential to plant growth, development, and stress responses. Although GASA family genes have been identified in various plant species, their functional roles in are still unknown. In this study, a total of 16 genes were identified via a genome-wide scan in and were grouped into three major gene clades based on the phylogenetic tree.

View Article and Find Full Text PDF

MicroRNAs is one class of small non-coding RNAs that play important roles in plant growth and development. Though miRNAs and their target genes have been widely studied in many plant species, their functional roles in floral bud break and dormancy release in woody perennials is still unclear. In this study, we applied transcriptome and small RNA sequencing together to systematically explore the transcriptional and post-transcriptional regulation of floral bud break in .

View Article and Find Full Text PDF