Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c01630DOI Listing

Publication Analysis

Top Keywords

emission
5
controlling valley-specific
4
valley-specific light
4
light emission
4
emission monolayer
4
monolayer mos
4
mos achiral
4
achiral dielectric
4
dielectric metasurfaces
4
metasurfaces excitons
4

Similar Publications

Microbial Enzymes for Biomass Conversion.

Annu Rev Microbiol

September 2025

3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.

View Article and Find Full Text PDF

Synthesis and Optical Properties of Unsymmetric Aromatically π-Extended BODIPY.

J Org Chem

September 2025

School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.

A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.

View Article and Find Full Text PDF

Strategic Design of Aptamer-Guided Aggregation-Induced Emission Nanoparticles for Targeted Photodynamic Therapy in Breast Cancer.

Adv Sci (Weinh)

September 2025

Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,

Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.

View Article and Find Full Text PDF

Unlabelled: Passive Acoustic Mapping (PAM) is rapidly emerging as a ubiquitous tool for real-time localization and monitoring of therapeutic ultrasound treatments involving cavitation in the context of safety or efficacy. The ability of PAM to spatially quantify and resolve cavitation activity offers a unique opportunity to correlate the energy of cavitation phenomena with locally observed bioeffects.

Objective: We aim to develop methods of measuring and reporting spatio-temporally varying cavitation energies that are energy-preserving, device-independent, and adequately normalized to the volume of tissue being affected by the reported cavitation activity.

View Article and Find Full Text PDF

Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.

View Article and Find Full Text PDF