98%
921
2 minutes
20
Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (β-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.06.041 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China.
Maxillary underdevelopment is a critical component of skeletal Class III malocclusion, closely linked to altered biomechanical signaling. Mechanical stimulation through early facemask protraction can effectively promote maxillary growth, yet the underlying mechanotransduction mechanisms remain unclear. In this study, fibroblast growth factor 9 (FGF9) is identified as a key biomechanical responder in maxillary development.
View Article and Find Full Text PDFZhongguo Gu Shang
August 2025
Department of Joint and Orthopedics, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
Steroid-induced osteonecrosis of the femoral head (SONFH) is avascular necrosis of the femoral head caused by long-erm use of corticosteroids, and its pathogenesis is complex and affected by changes in the dynamic balance of the bone microenvironment. With the deepening of research, the role of bone microenvironment in the pathogenesis of SONFH has been gradually revealed. In the case of excessive use of glucocorticoids (GCs), the bone microenvironment changes significantly, causing imbalance in bone lipid metabolism, microcirculation disorders and disorders of immune regulation, which promotes the increase of the number and activity of osteoclasts, and interferes with the differentiation of osteoblasts and adipoblasts.
View Article and Find Full Text PDFFASEB J
September 2025
School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province, China.
To investigate whether interferon-gamma (IFN-γ) alleviates postmenopausal osteoporosis (POP) by regulating METTL3 via the JAK2/STAT3 pathway to enhance osteogenic differentiation of jawbone marrow stromal cells (JBMSCs). Ovariectomized (OVX) rats received IFN-γ (5000 IU/dose, 3×/week for 24 weeks), with jawbone mass assessed via micro-CT and HE staining. JBMSCs were cultured, and osteogenic differentiation under IFN-γ (optimal concentration: 10 ng/mL) was evaluated using qRT-PCR, ALP/alizarin red staining, and CCK-8.
View Article and Find Full Text PDFBioengineering (Basel)
August 2025
Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.
Bone integrity is maintained through continuous remodeling, orchestrated by the coordinated actions of osteocytes, osteoblasts, and osteoclasts. Once considered passive bystanders, osteocytes are now recognized as central regulators of this process, mediating biochemical signaling and mechanotransduction. Malfunctioning osteocytes contribute to serious skeletal disorders such as osteoporosis.
View Article and Find Full Text PDFACS Appl Bio Mater
August 2025
Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025, India.
Incorporation of nanofillers into carbon foam (CF) is an amenable process to enhance its biological properties, which otherwise is bioinert. In the present study, CF-reinforced graphene oxide (CFGO) was considered to study the effects of GO on the structure, bioactivity, and biocompatibility using gingival mesenchymal stem cells (gMSCs) as the cellular source. CF was prepared by carbonization of polyurethane (PU) foam, and for the synthesis of GO-incorporated PU foam, GO was dispersed in isocyanate, one of the constituents of PU foam.
View Article and Find Full Text PDF