Publications by authors named "Timothy D Wilkinson"

Novel holographic displays have been developed recently due to increased demand in 3D displays over the past few years. However, the research still faces the limitations of small field of view (FOV) and complex setups to build full-color reconstructions. A method to realize an extended full-color replay field display based on an off-axis holographic system with a single spatial-light-modulator (SLM) is proposed in this paper.

View Article and Find Full Text PDF

Computer-generated holography (CGH) is a promising technology for augmented reality displays, such as head-mounted or head-up displays. However, its high computational demand makes it impractical for implementation. Recent efforts to integrate neural networks into CGH have successfully accelerated computing speed, demonstrating the potential to overcome the trade-off between computational cost and image quality.

View Article and Find Full Text PDF

Phase retrieval methods used in computer generated holograms such as Gerchberg-Saxton and gradient descent give results which are prone to noise and other defects. This work builds up on the idea of time-averaging multiple hologram frames, first introduced in methods like One-Step Phase-Retrieval and Adaptive One-Step Phase-Retrieval. The proposed technique called Multi-Frame Holograms Batched Optimization uses the L-BFGS optimization algorithm to simultaneously generate a batch of binary phase holograms which result in an average reconstructed image of improved fidelity and fast algorithmic convergence, both in the Fraunhoffer and the Fresnel regimes.

View Article and Find Full Text PDF

Recent experimental work has demonstrated the potential of combining the merits of diffractive and on-chip photonic information processing devices in a single chip by making use of planar (or slab) waveguides. Here, arguments are developed to show that diffraction formulas familiar from 3D Fourier optics can be adapted to 2D under certain mild conditions on the operating speeds of the devices in question. In addition to serving those working in on-chip photonics, this Letter provides analytical tools for the study of surface plasmon polaritons, surface waves, and the optical, acoustic, and crystallographic properties of 2D materials.

View Article and Find Full Text PDF

We implement a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization of phase-only computer-generated hologram for a multi-depth three-dimensional (3D) target. Instead of computing the full 3D reconstruction of the hologram, we use a novel method using L-BFGS with sequential slicing (SS) for partial evaluation of the hologram during optimization that only computes loss for a single slice of the reconstruction at every iteration. We demonstrate that its ability to record curvature information enables L-BFGS to have good quality imbalance suppression under the SS technique.

View Article and Find Full Text PDF

The effects of time-varying measurement noise on transmission matrix acquisition processes are considered for the first time, to our knowledge. Dominant noise sources are discussed, and the noise properties of a typical interferometer system used for characterizing a multimode fiber transmission matrix are quantified. It is demonstrated that an appropriate choice of measurement basis allows a more accurate transmission matrix to be more quickly obtained in the presence of measurement noise.

View Article and Find Full Text PDF

A complex-valued transmission matrix describing a scattering medium can be constructed from a sequence of many interferometric measurements. A major challenge in such experiments is to correct for rapid phase drift of the optical system during the data acquisition process, especially when the phase drifts significantly between consecutive measurements. Therefore, a new method is presented where the exact phase drift between two measurements is characterized and corrected using a single additional measurement.

View Article and Find Full Text PDF

We present dynamic time-resolved measurements of a multi-pixel analog liquid crystal phase modulator driven at a 1 kHz frame rate. A heterodyne interferometer is used to interrogate two pixels independently and simultaneously, to deconvolve phase modulation with a wide bandwidth. The root mean squared optical phase error within a 30 Hz to 25 kHz bandwidth is <0.

View Article and Find Full Text PDF

We present a high-throughput method for identifying and characterizing individual nanowires and for automatically designing electrode patterns with high alignment accuracy. Central to our method is an optimized machine-readable, lithographically processable, and multi-scale fiducial marker system─dubbed LithoTag─which provides nanostructure position determination at the nanometer scale. A grid of uniquely defined LithoTag markers patterned across a substrate enables image alignment and mapping in 100% of a set of >9000 scanning electron microscopy (SEM) images (>7 gigapixels).

View Article and Find Full Text PDF

Understanding and improving the perceived quality of reconstructed images is key to developing computer-generated holography algorithms for high-fidelity holographic displays. However, current algorithms are typically optimized using mean squared error, which is widely criticized for its poor correlation with perceptual quality. In our work, we present a comprehensive analysis of employing contemporary image quality metrics (IQM) as loss functions in the hologram optimization process.

View Article and Find Full Text PDF

Iterative Fourier transform algorithms are widely used for hologram generation for phase-modulating spatial light modulators. In this paper, we introduce a new technique called the "intermediate domain," which decomposes the Fourier transforms used into multiple subtransforms, the combination of which can offer major performance benefits over traditional approaches. To demonstrate this, we introduce ID-GS, an implementation of the intermediate domain technique for possibly the best known hologram generation algorithm, Gerchberg-Saxton.

View Article and Find Full Text PDF

Driver's access to information about navigation and vehicle data through in-car displays and personal devices distract the driver from safe vehicle management. The discrepancy between road safety and infotainment must be addressed to develop safely operated modern vehicles. Head-up displays (HUDs) aim to introduce a seamless uptake of visual information for the driver while securely operating a vehicle.

View Article and Find Full Text PDF

Non-interferometric approaches to quantitative phase imaging could enable its application in low-cost, miniaturised settings such as capsule endoscopy. We present two possible architectures and both analyse and mitigate the effect of sensor misalignment on phase imaging performance. This is a crucial step towards determining the feasibility of implementing phase imaging in a capsule device.

View Article and Find Full Text PDF

A holographic automotive head-up display was developed to project 2D and 3D ultra-high definition (UHD) images using LiDAR data in the driver's field of view. The LiDAR data was collected with a 3D terrestrial laser scanner and was converted to computer-generated holograms (CGHs). The reconstructions were obtained with a HeNe laser and a UHD spatial light modulator with a panel resolution of 3840×2160 px for replay field projections.

View Article and Find Full Text PDF

Spatial light modulators (SLMs) are key research tools in several contemporary applied optics research domains. In this paper, we present the argument that an open platform for interacting with SLMs would dramatically increase their accessibility to researchers. We introduce HoloBlade, an open-hardware implementation of an SLM driver-stack, and provide a detailed exposition of HoloBlade's architecture, key components, and detailed design.

View Article and Find Full Text PDF

The generation of computer-generated holograms (CGHs) requires a significant amount of computational power. To accelerate the process, highly parallel field-programmable gate arrays (FPGAs) are deemed to be a promising computing platform to implement non-iterative hologram generation algorithms. In this paper, we present a cost-optimized heterogeneous FPGA architecture based on a one-step phase retrieval algorithm for CGH generation.

View Article and Find Full Text PDF

We have solved the long-standing problems of stability and hysteresis, and we are able to obtain the homogeneous uniform lying helix structure in polymer-free cholesteric liquid crystals. This is instrumental for the present work to demonstrate the analog modulation at high speed and high precision. The device is configured for the transverse field switching wherein the substrate surface is flat.

View Article and Find Full Text PDF

Snapshot multispectral image (MSI) sensors have been proposed as a key enabler for a plethora of multispectral imaging applications, from diagnostic medical imaging to remote sensing. With each application requiring a different set, and number, of spectral bands, the absence of a scalable, cost-effective manufacturing solution for custom multispectral filter arrays (MSFAs) has prevented widespread MSI adoption. Despite recent nanophotonic-based efforts, such as plasmonic or high-index metasurface arrays, large-area MSFA manufacturing still consists of many-layer dielectric (Fabry-Perot) stacks, requiring separate complex lithography steps for each spectral band and multiple material compositions for each.

View Article and Find Full Text PDF

We present an algorithm for generating high-quality holograms for computer generated holography: holographic predictive search. This approach is presented as an alternative to traditional holographic search algorithms such as direct search (DS) and simulated annealing (SA). We first introduce the current search-based methods and then introduce an analytical model of the underlying Fourier elements.

View Article and Find Full Text PDF

Phase and polarization of coherent light are highly perturbed by interaction with microstructural changes in premalignant tissue, holding promise for label-free detection of early tumors in endoscopically accessible tissues such as the gastrointestinal tract. Flexible optical multicore fiber (MCF) bundles used in conventional diagnostic endoscopy and endomicroscopy scramble phase and polarization, restricting clinicians instead to low-contrast amplitude-only imaging. We apply a transmission matrix characterization approach to produce full-field images of amplitude, quantitative phase, and resolved polarimetric properties through an MCF.

View Article and Find Full Text PDF

Flexible optical fibres, used in conventional medical endoscopy and industrial inspection, scramble phase and polarisation information, restricting users to amplitude-only imaging. Here, we exploit the near-diagonality of the multi-core fibre (MCF) transmission matrix in a parallelised fibre characterisation architecture, enabling accurate imaging of quantitative phase (error <0.3 rad) and polarisation-resolved (errors <10%) properties.

View Article and Find Full Text PDF

Traditional search algorithms for computer hologram generation such as Direct Search and Simulated Annealing offer some of the best hologram qualities at convergence when compared to rival approaches. Their slow generation times and high processing power requirements mean, however, that they see little use in performance critical applications. This paper presents the novel sorted pixel selection (SPS) modification for holographic search algorithms that offers mean square error reductions in the range of 14.

View Article and Find Full Text PDF

We present here the first time-resolved tilt-angle and retardance measurements for large-tilt (>45°) flexoelectro-optic liquid crystal modulators. These devices have potential for next generation fast switching (>1 kHz), 0-2π analog phase spatial light modulators (SLMs), with applications in optical beamsteering, microscopy and micromachining. The chiral nematic device used consisted of a mixture of CBC7CB and the chiral dopant R5011 in a nominally 5 µm-thick cell, aligned in the uniform lying helix mode.

View Article and Find Full Text PDF

In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2π phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation.

View Article and Find Full Text PDF

Optical metamaterials offer the tantalizing possibility of creating extraordinary optical properties through the careful design and arrangement of subwavelength structural units. Gyroid-structured optical metamaterials possess a chiral, cubic, and triply periodic bulk morphology that exhibits a redshifted effective plasma frequency. They also exhibit a strong linear dichroism, the origin of which is not yet understood.

View Article and Find Full Text PDF