Publications by authors named "Benjamin Wetherfield"

Phase retrieval methods used in computer generated holograms such as Gerchberg-Saxton and gradient descent give results which are prone to noise and other defects. This work builds up on the idea of time-averaging multiple hologram frames, first introduced in methods like One-Step Phase-Retrieval and Adaptive One-Step Phase-Retrieval. The proposed technique called Multi-Frame Holograms Batched Optimization uses the L-BFGS optimization algorithm to simultaneously generate a batch of binary phase holograms which result in an average reconstructed image of improved fidelity and fast algorithmic convergence, both in the Fraunhoffer and the Fresnel regimes.

View Article and Find Full Text PDF

Recent experimental work has demonstrated the potential of combining the merits of diffractive and on-chip photonic information processing devices in a single chip by making use of planar (or slab) waveguides. Here, arguments are developed to show that diffraction formulas familiar from 3D Fourier optics can be adapted to 2D under certain mild conditions on the operating speeds of the devices in question. In addition to serving those working in on-chip photonics, this Letter provides analytical tools for the study of surface plasmon polaritons, surface waves, and the optical, acoustic, and crystallographic properties of 2D materials.

View Article and Find Full Text PDF

Understanding and improving the perceived quality of reconstructed images is key to developing computer-generated holography algorithms for high-fidelity holographic displays. However, current algorithms are typically optimized using mean squared error, which is widely criticized for its poor correlation with perceptual quality. In our work, we present a comprehensive analysis of employing contemporary image quality metrics (IQM) as loss functions in the hologram optimization process.

View Article and Find Full Text PDF

Iterative Fourier transform algorithms are widely used for hologram generation for phase-modulating spatial light modulators. In this paper, we introduce a new technique called the "intermediate domain," which decomposes the Fourier transforms used into multiple subtransforms, the combination of which can offer major performance benefits over traditional approaches. To demonstrate this, we introduce ID-GS, an implementation of the intermediate domain technique for possibly the best known hologram generation algorithm, Gerchberg-Saxton.

View Article and Find Full Text PDF