Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent experimental work has demonstrated the potential of combining the merits of diffractive and on-chip photonic information processing devices in a single chip by making use of planar (or slab) waveguides. Here, arguments are developed to show that diffraction formulas familiar from 3D Fourier optics can be adapted to 2D under certain mild conditions on the operating speeds of the devices in question. In addition to serving those working in on-chip photonics, this Letter provides analytical tools for the study of surface plasmon polaritons, surface waves, and the optical, acoustic, and crystallographic properties of 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.491576 | DOI Listing |