Publications by authors named "Sophie Lestavel"

A diet rich in lipids can lead to many deleterious conditions, which involve many regulatory molecules, such as non-coding (nc)RNAs. We aimed to analyze the effects of high dietary lipid exposure on the expression of intestinal ncRNAs (long non-coding [lncRNAs] and circular [circRNAs]). lncRNAs and circRNAs were screened, both in vivo (mice) and in vitro (human intestinal organoids).

View Article and Find Full Text PDF

The postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response.

View Article and Find Full Text PDF

A novel series of potent agonists of the bile acid receptor TGR5 bearing a dihydropyridone scaffold was developed from a high-throughput screen. Starting from a micromolar hit compound, we implemented an extensive structure-activity-relationship (SAR) study with the synthesis and biological evaluation of 83 analogues. The project culminated with the identification of the potent nanomolar TGR5 agonist .

View Article and Find Full Text PDF

Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of action remain elusive. Recent data point to the gut as MET's primary target. Here, we explored the effect of MET on the gut glucose transport machinery.

View Article and Find Full Text PDF

Objective: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism.

View Article and Find Full Text PDF

Several studies have demonstrated that high protein diets improve glucose homeostasis. Nevertheless, the mechanisms underlying this effect remain elusive. This exploratory study aims to screen and compare the acute effects of dietary proteins from different sources on intestinal glucose absorption.

View Article and Find Full Text PDF

The nuclear bile acid (BA) receptor farnesoid X receptor (FXR) is a major regulator of metabolic/energy homeostasis in peripheral organs. Indeed, enterohepatic-expressed FXR controls metabolic processes (BA, glucose and lipid metabolism, fat mass, body weight). The central nervous system (CNS) regulates energy homeostasis in close interaction with peripheral organs.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) and Non-Alcoholic Fatty Liver Disease (NAFLD) are pathologies whose prevalence continues to increase worldwide. Both diseases are precipitated by an excessive caloric intake, which promotes insulin resistance and fatty liver. The role of the intestine and its crosstalk with the liver in the development of these metabolic diseases is receiving increasing attention.

View Article and Find Full Text PDF

The alimentary limb has been proposed to be a key driver of the weight-loss-independent metabolic improvements that occur upon bariatric surgery. However, the one anastomosis gastric bypass (OAGB) procedure, consisting of one long biliary limb and a short common limb, induces similar beneficial metabolic effects compared to Roux-en-Y Gastric Bypass (RYGB) in humans, despite the lack of an alimentary limb. The aim of this study was to assess the role of the length of biliary and common limbs in the weight loss and metabolic effects that occur upon OAGB.

View Article and Find Full Text PDF

PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates.

View Article and Find Full Text PDF

Background: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia.

View Article and Find Full Text PDF

Scope: Type 2 diabetes (T2D) induces organ damage associated with glycation, among other metabolic pathways. While therapeutic strategies have been tested to reduce the formation and impact of glycation products, results remain equivocal. Anti-diabetic therapies using probiotics have been proposed, but their effect upon glycation has not been reported.

View Article and Find Full Text PDF

The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion.

View Article and Find Full Text PDF

A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Context: Bile acids (BAs) are signaling molecules controlling energy homeostasis that can be both toxic and protective for the liver. BA alterations have been reported in obesity, insulin resistance (IR), and nonalcoholic steatohepatitis (NASH). However, whether BA alterations contribute to NASH independently of the metabolic status is unclear.

View Article and Find Full Text PDF

Background: Activation of free fatty acid receptor 2 (FFAR2) by microbiota-derived metabolites (e.g., propionate) reduces leukaemic cell proliferation in vitro.

View Article and Find Full Text PDF

The role of the G-protein-coupled bile acid receptor TGR5 in various organs, tissues, and cell types, specifically in intestinal endocrine L-cells and brown adipose tissue, has made it a promising therapeutical target in several diseases, especially type-2 diabetes and metabolic syndrome. However, recent studies have shown deleterious on-target effects of systemic TGR5 agonists. To avoid these systemic effects while stimulating glucagon-like peptide-1 (GLP-1) secreting enteroendocrine L-cells, we have designed TGR5 agonists with low intestinal permeability.

View Article and Find Full Text PDF

Objective: To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction.

Design: We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo.

View Article and Find Full Text PDF

In addition to their well-known function as dietary lipid detergents, bile acids have emerged as important signalling molecules that regulate energy homeostasis. Recent studies have highlighted that disrupted bile acid metabolism is associated with metabolism disorders such as dyslipidaemia, intestinal chronic inflammatory diseases and obesity. In particular, type 2 diabetes (T2D) is associated with quantitative and qualitative modifications in bile acid metabolism.

View Article and Find Full Text PDF

Aims: The dyslipidemia associated with type 2 diabetes is a major risk factor for the development of atherosclerosis. Trans-intestinal cholesterol excretion (TICE) has recently been shown to contribute, together with the classical hepatobiliary route, to fecal cholesterol excretion and cholesterol homeostasis. The aim of this study was to develop an in vitro cell model to investigate enterocyte-related processes of TICE.

View Article and Find Full Text PDF

Background: Atherosclerosis is characterized by lipid accumulation and chronic inflammation in the arterial wall. Elevated levels of apolipoprotein (apo) B-containing lipoproteins are a risk factor for cardiovascular disease (CVD). By contrast, plasma levels of functional high-density lipoprotein (HDL) and apoA-I are protective against CVD by enhancing reverse cholesterol transport (RCT).

View Article and Find Full Text PDF

Background & Aims: Reducing postprandial triglyceridemia may be a promising strategy to lower the risk of cardiovascular disorders associated with obesity and type 2 diabetes. In enterocytes, scavenger receptor class B, type 1 (SR-B1, encoded by SCARB1) mediates lipid-micelle sensing to promote assembly and secretion of chylomicrons. The nuclear receptor subfamily 1, group H, members 2 and 3 (also known as liver X receptors [LXRs]) regulate genes involved in cholesterol and fatty acid metabolism.

View Article and Find Full Text PDF

Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion.

View Article and Find Full Text PDF
Article Synopsis
  • PPAR-α is a key transcription factor that regulates lipid metabolism in various organs, including the intestine, influencing levels of HDL cholesterol and triglycerides in the body.
  • The study showed that activating PPAR-α using a dual ligand called GFT505 resulted in greater increases in HDL levels and enhanced expression of HDL production genes compared to the drug fenofibrate.
  • Overall, PPAR-α activation improves lipid profiles by reducing cholesterol esterification and increasing HDL secretion in the intestine, highlighting its role in managing dyslipidemia.
View Article and Find Full Text PDF