Objective: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism.
View Article and Find Full Text PDFIn the version of this article initially published, ANR grant ANR-16-RHUS-0006 to author Joel T. Haas was not included in the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFLiver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms.
View Article and Find Full Text PDFProgression of fatty liver to non-alcoholic steatohepatitis (NASH) is a rapidly growing health problem. Presence of inflammatory infiltrates in the liver and hepatocyte damage distinguish NASH from simple steatosis. However, the underlying molecular mechanisms involved in the development of NASH remain to be fully understood.
View Article and Find Full Text PDFBackground: Clinical data identified an association between the use of HMG-CoA reductase inhibitors (statins) and incident diabetes in patients with underlying diabetes risk factors such as obesity, hypertension and dyslipidemia. The molecular mechanisms however are unknown.
Methods: An observational cross-sectional study included 910 severely obese patients, mean (SD) body mass index (BMI) 46.
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown.
View Article and Find Full Text PDFBackground & Aims: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis.
View Article and Find Full Text PDFKeratinocytes are key players in chronic inflammatory skin diseases. A20 regulates NF-κB-dependent expression of proinflammatory genes and cell death, but the impact of its expression in keratinocytes on systemic inflammation and skin disorders has not been determined. Comparative transcriptomic analysis of microdissected epidermis showed that A20 is down-regulated in involved epidermis, but not in dermis, of psoriasis and atopic dermatitis patients, suggesting that loss of A20 expression in keratinocytes increases the vulnerability for psoriasis/atopic dermatitis induction.
View Article and Find Full Text PDFAdipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors.
View Article and Find Full Text PDFNonalcoholic fatty liver disease prevalence is soaring with the obesity pandemic, but the pathogenic mechanisms leading to the progression toward active nonalcoholic steatohepatitis (NASH) and fibrosis, major causes of liver-related death, are poorly defined. To identify key components during the progression toward NASH and fibrosis, we investigated the liver transcriptome in a human cohort of NASH patients. The transition from histologically proven fatty liver to NASH and fibrosis was characterized by gene expression patterns that successively reflected altered functions in metabolism, inflammation, and epithelial-mesenchymal transition.
View Article and Find Full Text PDFControl of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at -regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question.
View Article and Find Full Text PDFBile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion.
View Article and Find Full Text PDFConditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene.
View Article and Find Full Text PDFCCCTC-binding factor (CTCF) is a ubiquitously expressed multifunctional transcription factor characterized by chromatin binding patterns often described as largely invariant. In this context, how CTCF chromatin recruitment and functionalities are used to promote cell type-specific gene expression remains poorly defined. Here, we show that, in addition to constitutively bound CTCF binding sites (CTS), the CTCF cistrome comprises a large proportion of sites showing highly dynamic binding patterns during the course of adipogenesis.
View Article and Find Full Text PDFThe nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation.
View Article and Find Full Text PDFUnlabelled: Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway.
View Article and Find Full Text PDFJ Am Coll Cardiol
October 2013
Objectives: This study sought to provide bedside evidence of the potential link between cardiac mitochondrial dysfunction and arrhythmia as reported in bench studies.
Background: Atrial fibrillation (AF) is a frequent complication of cardiac surgery. Underlying mechanisms of post-operative atrial fibrillation (POAF) remain largely unknown.
The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver.
View Article and Find Full Text PDFMetabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models.
View Article and Find Full Text PDFApolipoprotein A-V is an important determinant of plasma triglyceride level in both humans and mice. This study showed the physiological impact of apoA-V on insulin secretion in rat pancreatic beta-cells (INS-1 cells). In order to precise the mechanism of action, binding experiments coupled to mass spectrometry were performed to identify a potential membrane receptor.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
June 2005
Objective: The newly identified apolipoprotein A5 (APOA5), selectively expressed in the liver, is a crucial determinant of plasma triglyceride levels. Because elevated plasma triglyceride concentrations constitute an independent risk factor for cardiovascular diseases, it is important to understand how the expression of this gene is regulated. In the present study, we identified the retinoic acid receptor-related orphan receptor-alpha (RORalpha) as a regulator of human APOA5 gene expression.
View Article and Find Full Text PDFAlterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X receptor (LXR) ligand-mediated effect on plasma triglyceride levels. Following treatment with the LXR ligand T0901317, we found that APOA5 mRNA levels were decreased in hepatoma cell lines.
View Article and Find Full Text PDFThe recently discovered APOA5 gene has been shown in humans and mice to be important in determining plasma triglyceride levels, a major cardiovascular disease risk factor. apoAV represents the first described apolipoprotein where overexpression lowers triglyceride levels. Since fibrates represent a commonly used therapy for lowering plasma triglycerides in humans, we investigated their ability to modulate APOA5 gene expression and consequently influence plasma triglyceride levels.
View Article and Find Full Text PDF