Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates. We describe herein an extensive structure-properties relationships study allowing us to finely describe the non-linear effects of the PEG length on the physicochemical as well as the and pharmacokinetic properties of these compounds. When appending a PEG of suitable length to the TGR5 pharmacophore, we were able to identify either systemic or gut lumen-restricted TGR5 agonists.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c01774DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic properties
8
structure-properties relationships
8
small agonists
8
rule impact
4
impact pegylation
4
pegylation polymer
4
polymer sizes
4
sizes pharmacokinetic
4
properties structure-properties
4
relationships mpegylated
4

Similar Publications

This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.

View Article and Find Full Text PDF

Lipid-conjugated nucleoside prodrugs for antiviral therapy.

Bioorg Chem

August 2025

College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Nucleoside analogs have served as the cornerstone of antiviral therapy by acting as antimetabolites that disrupt viral DNA or RNA synthesis, thereby effectively inhibiting viral replication. Despite their clinical success, many nucleoside-based antivirals suffer from intrinsic limitations such as poor lipophilicity, low membrane permeability, and rapid metabolic degradation, all of which compromise oral bioavailability and therapeutic efficacy. To address these challenges, lipid conjugation has emerged as a promising prodrug strategy that enhances pharmacokinetic properties, improves cellular uptake, and enables targeted delivery.

View Article and Find Full Text PDF

Transcriptional enhanced associate domain (TEAD), overexpressed in hepatocellular carcinoma (HCC) and inversely correlated to prognosis, has emerged as a promising target for HCC therapy. To date, no small-molecule inhibitors targeting TEAD have been reported for HCC treatment. In this study, a bioinformatic analysis has been performed and has demonstrated that TEAD is a promising target for therapeutic intervention in HCC.

View Article and Find Full Text PDF

NIR-responsive dextran / poly(lactide) hydrogels: Characterization of cleavable hydrogels and photoactivated release of proteins.

Carbohydr Polym

November 2025

Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France. Electronic address:

Polysaccharide-based hydrogels often lack mechanical strength and, when used for protein delivery, are generally limited to diffusion-based release. In this work, we developed robust polysaccharide- and polyester-based near-infrared (NIR)-responsive hydrogels. Hydrogels are made from photo-crosslinked methacrylated dextran (DEX-MA), methacrylated polylactide containing oxygen reactive species (ROS) sensitive thioketal groups (PLA-TK-MA), and covalently bound protoporphyrin IX (PPIX) that generates ROS under NIR irradiation.

View Article and Find Full Text PDF

Gum arabic in drug delivery systems: A route-specific overview and functional insights.

Carbohydr Polym

November 2025

Department of Pharmaceutical Analysis, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India. Electronic address:

Gum Arabic (GA), a naturally occurring polysaccharide, has emerged as a promising biomaterial for drug delivery systems (DDS) due to its high water solubility, emulsifying capacity, biocompatibility, and biodegradability. Its structural richness in arabinogalactan facilitates strong interactions with biomolecules, enabling the development of various drug formulations including hydrogels, nanoparticles, liposomes, and emulsions. GA-based DDS have demonstrated significant potential in enhancing the solubility of poorly water-soluble drugs, protecting bioactive compounds from degradation, and enabling sustained and controlled drug release.

View Article and Find Full Text PDF