Publications by authors named "Shuqing An"

Construction waste offers environmental and economic benefits as a substrate for constructed wetlands (CWs), but its adverse effects, particularly elevated pH reducing removal efficiencies (REs), remain poorly understood. This study investigated mitigating these effects by combining waste concrete with other substrates and adjusting influent carbon to nitrogen (C/N) ratios at 3:1 and 7:1. Vertical subsurface flow CW simulators with four treatments-volcanic rock (Vo), waste concrete (Co), a 1:1 volcanic rock/concrete mixture (Fm), and a 3:1 mixture (Tm)-were established, assessing pollutant RE, microbial community functions, and associated risks/potentials.

View Article and Find Full Text PDF

Understanding the relationship between suspended particulate matter (SPM), sediment organic C, N stable isotopes, and lake trophic state index (TSI) is essential for managing lake pollution and eutrophication. According to the δC, δN, and C/N we found that the organic C in SPM and sediment of Caohai Lake primarily originated from macrophytes, while N was sourced from chemical fertilizers, phytoplankton, and aquatic plants. Total nitrogen, total phosphorus, NO3-N, oxidation reduction potential, and Chl.

View Article and Find Full Text PDF

Microplastics pose a serious ecological threat to rivers in China, and the construction of a large number of dams has complicated this problem. Ten dams of the Shaying River were chosen to investigate the abundance and composition of microplastics in surface water and sediments of the reservoir and upstream river. Ecological risk was evaluated using species sensitive distribution (SSD) and pollution load index (PLI).

View Article and Find Full Text PDF

Understanding PAH and OCP distributions and sources in lakes is necessary for developing pollutant control policies. Here, we assessed the occurrence, risk, and sources of PAHs and OCPs in the sediment of Caohai Lake. The PAHs were predominantly high-molecular-weight compounds (mean 57.

View Article and Find Full Text PDF

Dams are increasingly disrupting natural river systems, yet studies investigating their impact on microbial communities at regional scale are limited. Given the indispensable role of bacterioplankton in aquatic ecosystems, 16S rRNA gene sequencing was performed to explore how these communities respond to dam-influenced environmental changes at the regional scale in the Shaying River Basin. Our findings revealed that cascade dams create distinct environments, shaping bacterioplankton communities near the dams differently from those in natural rivers.

View Article and Find Full Text PDF

The improvement effect of Tubifex tubifex on the pollutant removal efficiencies (REs) of vertical flow constructed wetlands (VF-CWs) treating wastewater with various C/N ratios was explored. The experiment was conducted in pilot-scale saturated VF-CWs, being added different densities of T. tubifex and fed synthetic wastewater with successive C/N ratios of 0.

View Article and Find Full Text PDF

blooms are an intractable global environmental problem that pollute water and compromise ecosystem functioning. Closed-lake management practices keep lakes free of sewage and harmful algae invasions and have succeeded in controlling local blooms; however, there is little understanding of how the bacterioplankton communities associated with have changed. Here, based on metagenomic sequencing, the phyla, genera, functional genes and metabolic functions of the bacterioplankton communities were compared between open lakes (underlying blooms) and closed lakes (no blooms).

View Article and Find Full Text PDF

An integrated assessment of heavy metal (HM) contamination in dissolved matter, suspended particular matter (SPM) and sediments in lakes is essential. This study assessed the risks of HMs in the water, SPM and sediment of Caohai, China, and analyzed the changes in sediment HM contamination in conjunction with historical data. The HM transport was dominated by the SPM load, and the concentrations of Zn (179.

View Article and Find Full Text PDF

Human land uses are a crucial driver of biodiversity loss in freshwater ecosystems, and most studies have focused on how cities or croplands influence alpha diversity while neglecting the changes in community composition (beta diversity), especially in algae. Here, we examined the taxonomic and functional composition of algae communities and their underlying drivers along the human land-use intensity gradient in the Huai River basin, the third largest basin in China. Our results indicated that the increased intensity of human land use caused biotic homogenization (decreasing compositional dissimilarity between sites) of algae communities in terms of both taxonomic and functional traits.

View Article and Find Full Text PDF

The impact of damming on river ecosystems has received increasing attention, but a comprehensive understanding of the occurrence, drivers and exposure risks of microplastic (MP) pollution in multigate dam-type rivers is lacking. We investigated the characteristics and abundance of MPs in water, sediment and biological tissues from samples collected in the vicinity of ten dams in the Shaying River basin and analyzed the effect of environmental and food web structural changes on MP accumulation in freshwater animals under the influence of dams. Dam construction affects the transportation, suspension, and deposition of MPs at different dam locations (upstream, reservoir, and downstream) by altering hydrodynamihas changed the migration process of MPs.

View Article and Find Full Text PDF

Wastewater treatment plant (WWTP) effluent is discharged into rivers as supplemental water, which may result in ecological risk. This study compares the element composition and microbial community of WWTP effluent and natural surface water (NSW) and reveals the potential ecological risk of WWTP effluent discharge. Twenty recently upgraded WWTPs and three relatively large reservoirs in Zhengzhou city, China, were selected.

View Article and Find Full Text PDF

Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Natural revegetation effectively restores degraded lands, enhancing ecosystem productivity and soil nutrients, yet its impact on soil fungal communities and nutrient cycling remains unclear.
  • The study focused on the Loess Plateau in China, analyzing fungal changes over ~160 years of natural revegetation using advanced DNA sequencing.
  • Findings showed that fungal abundance increased in later revegetation stages, with a complex pattern of richness and diversity shift, indicating changes in fungal community composition that influence carbon and nitrogen accumulation in soil.
View Article and Find Full Text PDF

Rhizoplane microbes are considered proxies for evaluating the assemblage stability of the rhizosphere in wetland ecosystems due to their roles in plant growth and ecosystem health. However, our knowledge of how microbial assemblage stability is promoted in the reed rhizosphere of wetlands undergoing recovery is limited. We investigated the assemblage stability, diversity, abundance, co-occurrence patterns, and functional characteristics of reed rhizosphere microbes in restored wetlands.

View Article and Find Full Text PDF

To identify the effect of influent salinity on substrate selection, a study was conducted in pilot-scale surface flow constructed wetlands (SFCWs). Compared with gravel and sand SFCWs, soil SFCWs performed similarly or worse at low salinities, while at high salinities, soil SFCWs performed similarly or better in removal efficiency (RE) of salt, total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD). Soil generally increased macrophyte growth (especially at high salinity) in terms of biomass, leaf chlorophyll concentration, root activity, and root catalase and superoxide dismutase activities.

View Article and Find Full Text PDF

Lab-scale simulated biofilm reactors, including aerated reactors disturbed by short-term aeration interruption (AE-D) and non-aerated reactors disturbed by short-term aeration (AN-D), were established to study the stable-state (SS) formation and recovery after disturbance for nitrogen transformation in terms of dissolved oxygen (DO), removal efficiency (RE) of NH-N and NO-N and activity of key nitrogen-cycle functional genes A and S (RNA level abundance, per ball). SS formation and recovery of DO were completed in 0.56-7.

View Article and Find Full Text PDF

Coastal reclamation seriously disturbs coastal wetland ecosystems, while its influences on soil microbial communities remain unclear. In this study, we examined the impacts of coastal reclamation on soil microbial communities based on phospholipid fatty acids (PLFA) analysis following the conversion of Phragmites australis wetlands to different land use types. Coastal reclamation enhanced total soil microbial biomass and various species (i.

View Article and Find Full Text PDF

Both submerged macrophytes (SMs) and artificial macrophytes (AMs) have been widely used to improve water quality in eutrophic water. However, in heavily eutrophic aquatic ecosystems, the purification function of SMs is often restricted by the poor growth state due to competition from algae, while the purification function of AMs is often restricted by the limited carbon source supply for biofilm microbes attached to the AM surface. The objective of this study was to develop a new strategy to increase pollutant removal efficiency (RE) by combining the use of SMs and AMs.

View Article and Find Full Text PDF

Pilot-scale floating constructed wetlands (FCWs) under varying influent salinities were implemented, and the effects of influent salinity on pollutant removal efficiency (RE) and macrophyte species selection were identified. The results suggest that a salinity increase generally decreased pollutant REs, while some macrophytes, such as Iris pseudacorus, could effectively resist this decrease. The average coefficients of variation between macrophyte species in REs of chemical oxygen demand, ammonium nitrogen, nitrate nitrogen and total phosphorus increased from 28.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how sediment microbiomes respond to external factors, particularly seasonal changes and terrestrial pollutants.
  • The findings reveal that land use types have a more significant impact on sediment microbiome structure and function than seasonal variations.
  • Terrestrial pollutants were found to diminish the impact of seasonal changes, suggesting that these pollutants play a dominant role in shaping sediment microbiome characteristics.
View Article and Find Full Text PDF

Sediment remediation in eutrophic aquatic ecosystems is imperative, but effective ecological measures are scarce. A pilot-scale trial investigated sediment remediation by the addition of Tubifex tubifex. The results showed that the addition of T.

View Article and Find Full Text PDF

Pilot-scale saturated vertical flow constructed wetlands (VF-CWs) were established to identify whether T. tubifex has the similar performance in saturated VF-CWs to that in surface flow CWs in improving pollutant removal efficiency (RE). The saturated VF-CWs with T.

View Article and Find Full Text PDF

Human-induced global change dramatically alters individual aspects of river biodiversity, such as taxonomic, phylogenetic or functional diversity, and is predicted to lead to losses of associated ecosystem functions. Understanding these losses and dependencies are critical to human well-being. Until now, however, most studies have only looked either at individual organismal groups or single functions, and little is known on the effect of human activities on multitrophic biodiversity and on ecosystem multifunctionality in riverine ecosystem.

View Article and Find Full Text PDF

Using vertical flow constructed wetlands (VFCWs) with different influent wastewater volumes and feeding modes, this study aimed to identify the optimal operation strategy for dry seasons under wastewater deficiency. Using half the influent wastewater volume (HIWV) did not necessarily improve the removal efficiency (RE) of the chemical oxygen demand (COD), NH-N, NO-N and total nitrogen. In the HIWV treatments, intermittent resting did not result in significantly different pollutant REs, whereas strategies involving partial saturation and prolongation of the hydraulic retention time (HRT) slightly decreased the pollutant REs compared with those obtained in the constant feeding mode.

View Article and Find Full Text PDF

The role of Tubifex tubifex in organic matter (OM) decomposition in aquatic ecosystems has been widely studied, but considerable uncertainties exist in terms of the effect mechanism. The effect of T. tubifex on sediment OM decomposition in laboratory-scale microcosms was quantified, and possible pathways were identified.

View Article and Find Full Text PDF