Recent conceptual and technological advances have underlined the importance of the human immune system in responding to dangerous threats, restoring tissue homeostasis, and mounting immunological memory. Our in-depth understanding of the immune system has also been driving the blossoming development of biocompatible macroscale biomaterials designed to prevent and treat various immune-related disorders. Hydrogels, a class of water-swollen networks with extracellular matrix-mimic characteristics, have served as promising biomaterials for guiding the immune system in biological milieus.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
The progression of osteoarthritis (OA) is dramatically accelerated by excessive reactive oxygen species (ROS)-induced apoptosis of chondrocytes and the inflammatory response of synovial macrophages. In this study, we developed an injectable hydrogel with a catalase-mimicking nanozyme activity as a therapeutic agent for OA. In vitro experiments confirmed that the HA and peroxide-mimetic nanoenzyme-enhanced hydrogel, containing ε-polylysine/MnCoO (ε-PLE/MnCoO) nanoparticles, continuously eliminated ROS and inflammatory cytokines while promoting the polarization of inflammatory macrophages (M1 phenotype) towards anti-inflammatory macrophages (M2 phenotype) in dysfunctional microenvironments.
View Article and Find Full Text PDFOne-for-all phototheranostics, referring to a single component simultaneously exhibiting multiple optical imaging and therapeutic modalities, has attracted significant attention due to its excellent performance in cancer treatment. Benefitting from the superiority in balancing the diverse competing energy dissipation pathways, aggregation-induced emission luminogens (AIEgens) are proven to be ideal templates for constructing one-for-all multimodal phototheranostic agents. However, to this knowledge, the all-round AIEgens that can be triggered by a second near-infrared (NIR-II, 1000-1700 nm) light have not been reported.
View Article and Find Full Text PDFStem cell-based therapy has drawn attention for enhancing the osseointegration efficiency after joint replacement in the rheumatoid arthritis (RA). However, therapeutic efficacy of this approach is threatened by the accumulated reactive oxygen species (ROS) and poor oxygen supply. Herein, we develop a nanozyme-reinforced hydrogel for reshaping the hostile RA microenvironment and improving prosthetic interface osseointegration.
View Article and Find Full Text PDFSupramolecular toroids have attracted continuous attention because of their fascinating topological structure and important role in biological systems. However, it still remains a great challenge to construct supramolecular functional toroids and clarify the formation mechanism. Herein, we develop a strategy to prepare supramolecular helical fluorescent nanotoroids by cooperative self-assembly of an amino acid and a dendritic amphiphile (AIE-den-1) with aggregation-induced emission characteristics.
View Article and Find Full Text PDFInspired by the excellent photothermal conversion ability and inherent nanomedicine platform property of MXenes, efficient reactive oxygen species production and prominent fluorescence emission feature of aggregation-induced emission (AIE)-active photosensitizers (PSs), as well as the extending excitation wavelength capability of upconversion nanoparticles (UCNPs), a versatile nanoplatform comprised of Ti C nanosheets (NSs), AIE-active PSs and UCNPs is intelligently fabricated. This three-pronged strategy takes advantages of each component simultaneously, and realizes fluorescence imaging/photoacoustic imaging/photothermal imaging triple-modal imaging-guided photothermal/photodynamic synergetic therapy under 808 nm laser irradiation. The introduction of UCNPs actualizes the long wavelength-activation of AIE-active PSs, which significantly increases the tissue penetration depth.
View Article and Find Full Text PDFTissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized.
View Article and Find Full Text PDFControllable construction of diversiform topological morphologies through supramolecular self-assembly on the basis of single building block is of vital importance, but still remains a big challenge. Herein, a bola-type supra-amphiphile, namely DAdDMA@2-CD, is rationally designed and successfully prepared by typical host-guest binding -cyclodextrin units with an aggregation-induced emission (AIE)-active scaffold DAdDMA. Self-assembling investigation reveals that several morphologies of self-assembled DAdDMA@2-CD including leaf-like lamellar structure, nanoribbons, vesicles, nanofibers, helical nanofibers, and toroids, can be straightforwardly fabricated by simply manipulating the self-assembling solvent proportioning and/or temperature.
View Article and Find Full Text PDFThe profiling of bacterial metabolism is of great significance in practical applications. Therefore, the development of ultrasensitive and highly selective probe for bacterial metabolism detection and imaging is extremely desirable. Herein, a novel dual-emission pH-response bacterial metabolism detection and imaging probe is successfully developed.
View Article and Find Full Text PDFA series of dual-emission fluorescent probes was prepared from copper nanoclusters (Cu NCs) and carbon dots (CDs). They show two emission peaks (blue at 469 nm and red at 622 nm) when photoexcited at 365 nm. Upon exposure to sulfide, the Cu NCs will be deteriorated because they react with sulfide to form CuS.
View Article and Find Full Text PDFJ Mater Chem B
January 2019
Synergistic thermo-chemotherapy based multiple stimuli-responsive drug delivery systems have achieved significant improvement of cancer curative effects compared with single modality treatment. Nevertheless, the efficacy of thermo-chemotherapy is often reduced in drug-resistant tumors and the therapy method is unexpectedly associated with potential toxicity by utilizing poorly degradable materials. Here, we report a simple approach to encapsulate three drug payloads into multi-sensitive and degradable nanospheres (SDC@NS) to achieve anticancer effects.
View Article and Find Full Text PDFThe profiling of disease-related biomarkers is an essential procedure for the accurate diagnosis and intervention of metabolic disorders. Therefore, the development of ultrasensitive and highly selective fluorogenic biosensors for diverse biomarkers is extremely desirable. There is still a considerable challenge to prepare nanocluster-based fluorescence turn-on probes capable of recognizing multiple biomolecules.
View Article and Find Full Text PDFFluorescence-based nanothermometers have potential to offer accuracy in the measurement of temperature using non-contact approaches. Herein, a C-dot/C-dot based dual-emission temperature sensing platform is fabricated through the electrostatic self-assembly of two kinds of fluorescent CDs with opposite charges. This dual-emission platform consists of several nearly-spherical CDs with two emission centers in blue (440 nm) and orange (590 nm) regions.
View Article and Find Full Text PDFA fast, sensitive, and convenient dual-emission water detector was robustly fabricated. This detector was prepared with blue fluorescent carbon dots (CDs) and red fluorescent Cu nanoclusters (NCs), and showed two well-resolved and intensity-comparable fluorescence peaks under a single excitation wavelength. Moreover, it showed strong red fluorescence in organic solvent due to the aggregation-induced emission enhancement (AIEE) properties of the Cu NCs, but the red fluorescence was gradually quenched with an increasing amount of water, whereas the blue fluorescence remained constant.
View Article and Find Full Text PDF