The time-dependent dielectric breakdown (TDDB) degradation mechanism, governed by the synergistic interaction of multiphysics fields, plays a pivotal role in the performance degradation and eventual failure of semiconductor devices and advanced packaging back-end-of-line (BEOL) structures. This work specifically focuses on the dielectric breakdown mechanism driven by metal ion migration within inter-metal dielectric layers, a primary contributor to TDDB degradation. A SPICE-compatible modeling approach is developed to accurately capture the dynamics of this ion migration-induced degradation.
View Article and Find Full Text PDFBackground: Horizontal platelet-rich fibrin (H-PRF) is a novel platelet concentrate known for promoting tissue regeneration, the purpose of this study was to assess the impact of H-PRF on gingival defects healing using both in vitro and in vivo approaches.
Methods: Human gingival fibroblasts (hGFs) were cultured with lipopolysaccharide (LPS), H-PRF, and H-PRF + LPS. Then, cell viability, proliferation, apoptosis and migration were evaluated via fluorescence staining, CCK-8, flow cytometry, scratch and Transwell assays, respectively.
Enzymatic nucleic acid reaction is a fundamental tool in molecular biology. However, high-complexity enzymatic DNA reactions and assays are still challenging due to the difficulties in integrating and scaling up microscale reaction units and mixing tools. Here, we present scalable acoustofluidic platform featuring acoustic virtual stirrer (AVS) arrays, serving as stirrers to increase the efficiency of interfacial enzymatic nucleic acid reactions.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. Licorice and dried ginger decoction (LGD) is traditional Chinese medicine prescription with multiple effects. Glycyrrhetinic acid (GA) is the main bioactive components of LGD, which has been proven to have a relieving effect on various inflammatory diseases.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
Surface enhanced fluorescence (SEF) based on noble metal nanoparticles is an effective means to achieve high sensitivity in fluorescence detection. Currently, the physical mechanism behind enhanced fluorescence is not fully understood. This paper measures the fluorescence signals of Dihydroporphyrin f methyl ether (CPD4) under both single-photon and two-photon excitation based on submicrometer silver particles with rough morphologies, achieving enhancement factors of 34 and 45 times, respectively.
View Article and Find Full Text PDFIntracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials.
View Article and Find Full Text PDFElectrically powered solitons are particle-like field configurations in out-of-equilibrium nematics that have garnered significant interest. However, their random generation and lack of controllable motion have limited their application. Here, we present a reconfigurable optoelectronic approach capable of regulating the entire lifecycle of solitons by utilizing multi-strategy digital light projection to construct delicate patterning of virtual electrode.
View Article and Find Full Text PDFTo improve the wear resistance of the materials used for blades in engineering machinery, this study focused on the microstructural characteristics, mechanical properties, and wear behavior of HB500 grade wear-resistant steel developed using an optimized heat treatment system. To improve the temperature uniformity of the heat treatment furnace, the method of cyclic heating was used to heat the components. Carefully designing the quenching equipment, such as using a cross-shaped press, was employed to enhance the quenching effect and reduce the deformation of the steel plates.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
June 2024
Neuropathic pain(NP) is difficult to be treated since it has similar phenotypes but different pathogenesis in different pathological stages. Targeted intervention of the core regulatory elements at different pathological stages of NP has become a new direction of drug research and development in recent years and provides the possibility for the treatment of NP. The Mongolian medicine Naru-3(NR-3) is effective in the treatment of sciatica and trigeminal neuralgia, the mechanisms of which remain unknown.
View Article and Find Full Text PDFLiquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2023
The Baimai Ointment with the effect of relaxing sinew and activating collaterals demonstrates a definite effect on Baimai disease with pain, spasm, stiffness and other symptoms, while the pharmacodynamic characteristics and mechanism of this agent remain unclear. In this study, a rat model of chronic compression of L4 dorsal root ganglion(CCD) was established by lumbar disc herniation, and the efficacy and mechanism of Baimai Ointment in the treatment of CCD were preliminarily explored by behavioral tests, side effect evaluation, network analysis, antagonist and molecular biology verification. The pharmacodynamic experiment indicated that Baimai Ointment significantly improved the pain thresholds(mechanical pain, thermal pain, and cold pain) and gait behavior of CCD model rats without causing tolerance or obvious toxic and side effects.
View Article and Find Full Text PDFAs electrically generated solitons in liquid crystals, directrons represent intriguing structures promising extensive application prospects in the areas of microcargo vehicles, microreactors, and logic devices. However, manipulating directrons along elaborate predetermined trajectories still remains to be largely explored. In this work, the strategy of constructing high-resolution periodic alignment fields for directrons the polarization holography photoalignment technique is presented.
View Article and Find Full Text PDFThe rational design of morphology and structure for oxygen reduction reaction (ORR) catalysts still remains a critical challenge. Herein, we successfully construct defect-rich and hierarchically porous Fe-N-C nanosheets (Fe-N-CNSs), by taking advantage of metal-organic complexation and a mesoporous template. Benefiting from the advantages of high density of active sites, fast mass transfer channels, and sufficient reaction area, the optimal Fe-N-CNSs demonstrate satisfactory ORR activity with an excellent half-wave potential of up to 0.
View Article and Find Full Text PDFBackground: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model.
Methods: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge.
A high temporal waveform fidelity stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) with high energy efficiency, based on a novel medium, Novec-7500, is proposed and practically achieved in this study. A theoretical analysis reveals that the temporal-domain waveform distortion is caused by the inherent pulse duration compression effect of the SBS, and this undesirable phenomenon can be significantly suppressed by decreasing the compression coefficient (CC afterwards), which is defined as the gain coefficient divided by the phonon lifetime, which coefficient and is identified as the key parameter for high waveform-fidelity in SBS-PCM. The feasibility of this approach was demonstrated experimentally, in which a reflected pulse with waveform symmetry equals to the pump and an average pulse duration of 0.
View Article and Find Full Text PDFThe toxicity of metals to microorganisms is highly correlated with the type of metal used. However, the differences in the resistance mechanisms of filamentous fungi to multiple metals remain unclear. In this study, we investigated the responses of Aspergillus niger to three toxic metals, i.
View Article and Find Full Text PDFOpt Express
September 2022
A dynamically reconfigurable liquid crystal (LC) photonic device is an important research field in modern LC photonics. We present a type of continuously tunable distributed Bragg reflector (DBR) based on LC polymer composites modulated via a novel optofluidic method. LC-templated DBR films are fabricated by photopolymerization under visible standing wave interference.
View Article and Find Full Text PDFPrecise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets.
View Article and Find Full Text PDFOpt Express
April 2022
The pulse duration of the near quarter-acoustic period (τ) is demonstrated in transient stimulated Brillouin scattering (SBS) pulse compression by the suppressing Stokes trailing-edge broadening at high intensities. A theoretical analysis reveals that the difficulty in attaining the transient compression limit is caused by the broadening of the Stokes trailing edge owing to insufficient pump depletion, and this undesirable phenomenon can be significantly suppressed by a high SBS gain coefficient. An average pulse duration of ∼1.
View Article and Find Full Text PDFFront Chem
January 2022
Photodetectors converting optical signals into electrical signals have been widely utilized and have received more and more attention in scientific research and industrial fields including optical interconnection, optical communication, and environmental monitoring. Herein, we summarize the latest development of photodetectors with different micro-nano structures and different materials and the performance indicators of photodetectors. Several photodetectors, such as flexible, ultraviolet two-dimensional (2D) microscale, and dual-band photodetectors, are listed in this minireview.
View Article and Find Full Text PDFThe coexistence of heavy metals in aquatic systems causes complex toxicity in microorganisms. In this study, we explored the influences of Pb addition on Cd toxicity in Rhodotorula mucilaginosa (Rho). Cd toxicity alone was tested with up to 200 mg/L Cd to induce stress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2021
Co-existence of toxic metals causes complex toxicity to microorganisms during bioremediation in water and soil. This study investigated the immobilization of Pb and Cd by fungus Aspergillus niger, which has been widely applied to environmental remediation. Five treatments were set, i.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
April 2021
The paper presents a 256-pixel CMOS sensor array with in-pixel dual electrochemical and impedance detection modalities for rapid, multi-dimensional characterization of exoelectrogens. The CMOS IC has 16 parallel readout channels, allowing it to perform multiple measurements with a high throughput and enable the chip to handle different samples simultaneously. The chip contains a total of 2 × 256 working electrodes of size 44 μm × 52 μm, along with 16 reference electrodes of dimensions 56 μm × 399 μm and 32 counter electrodes of dimensions 399 μm × 106 μm, which together facilitate the high resolution screening of the test samples.
View Article and Find Full Text PDF