Publications by authors named "Sei Kwang Hahn"

Noninvasive continuous glucose monitoring (CGM) offers a promising alternative to conventional blood-based approaches for diabetes management. Among various body fluids, sweat is an attractive medium to reflect the blood glucose levels in the body. However, technical challenges for the sweat analysis persist due to the low analyte concentrations, potential contamination, and inefficient sampling.

View Article and Find Full Text PDF

Stem cell therapy has been widely investigated for the treatment of chronic bladder diseases such as interstitial cystitis/bladder pain syndrome (IC/BPS). However, the delivery of stem cells into the bladder wall is limited due to the mucus layer lining the bladder wall and the frequent urination, leading to the fast clearance of stem cells from the bladder. Here, we report a soft microgelbot (μgelbot) composed of a magnetic nanochain embedded microgel in a tunable size and shape for the enhanced delivery of mesenchymal stem cells (MSCs) into the bladder wall through the mucus layer.

View Article and Find Full Text PDF

Despite extensive investigation on soft bioelectronic systems for smart healthcare, it remains a big technical challenge to achieve robust, wireless integration of multifunctional components via monolithic patterning. Here, we developed a wireless wearable healthcare device fabricated using bulk and hollow gold nanowires (Ag@AuNW and AuHNW) with distinct electrical properties. The strain sensor based on AuHNW showed high sensitivity (ΔR/R = 773.

View Article and Find Full Text PDF

The precise decoration of bimetallic nanocrystals (NCs) with uniform size and homogeneous composition on metal oxide (MOX) surfaces is crucial for developing highly sensitive and selective MOX-based gas sensors. In this study, MOX-based gas sensors are present decorated with homogeneous Au-Pd bimetallic (Au@Pd) NCs synthesized via seed-mediated sequential reduction of Au and Pd on an array of TiO nanohelices (NHs) matrix. Due to the uniform composition, size, and dispersion of the bimetallic NCs, the sensor exhibits outstanding toluene (CH) sensing performance.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are widely recognized for their potential in drug delivery. However, they exhibit significant limitations in stability and targeting. In this study, we designed a target-specific siRNA delivery system by coating hyaluronate (HA) onto cationic solid lipid nanoparticles (CSLNs).

View Article and Find Full Text PDF

Regenerative medicine with stem cells has played a pivotal role in tissue engineering, demonstrating remarkable potential to address degenerative diseases and tissue deficiencies. Despite its great potential, this field faces significant challenges, including the need to control cellular behavior, achieve real-time monitoring, and standardize stimulation protocols. To address these technical hurdles, the integration of stem cells with smart bioelectronic materials and devices has emerged as a groundbreaking paradigm in regenerative medicine, offering huge potential for improved therapeutic outcomes in various tissue engineering applications.

View Article and Find Full Text PDF

On-eye optoelectronic systems can address unmet needs across various healthcare applications, including monitoring of physiological signals related to vision or other diseases. In this context, this work introduces wearable light sources that combine ultrathin organic light-emitting diodes (OLEDs) with contact lenses. As an illustration, we demonstrate their efficacy as a robust lighting solution for electroretinography (ERG).

View Article and Find Full Text PDF

Photothermal therapy (PTT) has attracted great interest due to the high spatial precision and reduced general toxicity compared to conventional cancer therapies. However, PTT often faces challenges such as incomplete tumor eradication and collateral damage to healthy tissues. Here, we report an injectable MXene-doxorubicin (MD) complex-loaded supramolecular hydrogel (MDGel) for dual synergistic cancer therapy of near-infrared (NIR) PTT and chemotherapy.

View Article and Find Full Text PDF

Although smart contact lenses have demonstrated great potential in theranostics, there remain critical challenges and opportunities in their commercial development. In this Perspective, the current status and capability of smart theranostic contact lenses are highlighted, focusing on their application as sensing systems for detecting biomarkers such as glucose, intraocular pressure (IOP), and inflammatory cytokines, and as drug delivery systems (DDS) for precise and controlled therapy. Additionally, key challenges associated with clinical development and commercialization of smart theranostic contact lenses are discussed, to optimize diagnostic and therapeutic interventions.

View Article and Find Full Text PDF

The nervous and immune systems are closely interconnected, and influence the onset and progress of various diseases. Accordingly, understanding the interaction of the neural system and the immune system becomes very important for the treatment of intractable diseases with the analysis of therapeutic mechanisms, such as autoimmune diseases, neurodegenerative diseases, cancers, and so on. The conventional immunomodulation treatments have been mainly carried out by drug administration, but they have suffered from systemic negative side-effects with only limited effects on the specific disease.

View Article and Find Full Text PDF

Most non-muscle invasive bladder cancers have been treated by transurethral resection and following intravesical injection of immunotherapeutic agents. However, the delivery efficiency of therapeutic agents into bladder wall is low due to frequent urination, which leads to the failure of treatment with side effects. Here, we report a urease-powered nanomotor containing the agonist of stimulator of interferon genes (STING) for the efficient activation of immune cells in the bladder wall.

View Article and Find Full Text PDF

In this study, in situ formed silica nanoparticles (SNPs) emitting second-level phosphorescence at room temperature without a phosphorescent dopant have been achieved for the first time. This phosphorescence is achieved through the simple in situ formation of carbonaceous defects (CDs) within the SNPs, followed by passivation of the CDs by a robust silica matrix. The CD in the SNPs, termed CD@SNPs, are synthesized by cross-linking tetraethyl orthosilicate (TEOS) and (3-aminopropyl)triethoxysilane (APTES), and these cross-linked components create a porous structure within the silica matrix.

View Article and Find Full Text PDF

Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase.

View Article and Find Full Text PDF

As an alternative to tissue adhesives, photochemical tissue bonding is investigated for advanced wound healing. However, these techniques suffer from relatively slow wound healing with bleeding and bacterial infections. Here, the versatile attributes of afterglow luminescent particles (ALPs) embedded in dopamine-modified hyaluronic acid (HA-DOPA) patches for accelerated wound healing are presented.

View Article and Find Full Text PDF

Wearable diabetic healthcare devices have attracted great attention for real-time continuous glucose monitoring (CGM) using biofluids such as tears, sweat, saliva, and interstitial fluid via noninvasive ways. In response to the escalating global demand for CGM, these devices enable proactive management and intervention of diabetic patients with incorporated drug delivery systems (DDSs). In this context, multifunctional nanomaterials can trigger the development of innovative sensing and management platforms to facilitate real-time selective glucose monitoring with remarkable sensitivity, on-demand drug delivery, and wireless power and data transmission.

View Article and Find Full Text PDF

Cryotherapy leverages controlled freezing temperature interventions to engender a cascade of tumor-suppressing effects. However, its bottleneck lies in the standalone ineffectiveness. A promising strategy is using nanoparticle therapeutics to augment the efficacy of cryotherapy.

View Article and Find Full Text PDF

Wearable devices for digital continuous glucose monitoring (CGM) have attracted great attention as a new paradigm medical device for diabetes management. However, the relatively inaccurate performance and instability of CGM devices have limited their wide applications in the clinic. Here, we developed hyaluronate (HA) modified Au@Pt bimetallic electrodes for long-term accurate and robust CGM of smart contact lens.

View Article and Find Full Text PDF

Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability.

View Article and Find Full Text PDF

Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs.

View Article and Find Full Text PDF

Diabetic wound patients are often exposed to bacterial infections with delayed healing process due to hyperglycemia in the damaged skin tissue. Antimicrobial peptides (AMPs) have been investigated for the treatment of infection-induced diabetic wounds, but their low stability and toxicity have limited their further applications to diabetic chronic wound healing. Here, we developed a precisely controlled AMP-releasing injectable hydrogel platform, which could respond to infection-related materials of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS).

View Article and Find Full Text PDF

There are several methods for early diagnosis of tumors, such as detecting circulating tumor DNAs, detecting circulating tumor cells, or imaging with tumor-targeting contrast agents. However, these assays are time-consuming and may cause patient discomfort during the biopsy collecting process. Here, we develop a facile method for early diagnosis of tumors by extracting exosomes from interstitial fluid (ISF) using hydrogel microneedles (MNs).

View Article and Find Full Text PDF

Although spherical gold (Au) nanoparticles have remarkable photothermal conversion efficiency and photostability, their weak absorption in the near-infrared (NIR) region and poor penetration into deep tissues have limited further applications to NIR light-mediated photoacoustic (PA) imaging and noninvasive photothermal cancer therapy. Here, we developed bimetallic hyaluronate-modified Au-platinum (HA-Au@Pt) nanoparticles for noninvasive cancer theranostics by NIR light-mediated PA imaging and photothermal therapy (PTT). The growth of Pt nanodots on the surface of spherical Au nanoparticles enhanced the absorbance in the NIR region and broadened the absorption bandwidth of HA-Au@Pt nanoparticles by the surface plasmon resonance (SPR) coupling effect.

View Article and Find Full Text PDF

Background: The main protease (Mpro) is a crucial target for severe acute respiratory syndrome coronavirus (SARS-CoV-2). Chitooligosaccharide (CS) has broad-spectrum antiviral activity and can effectively inhibit the activity of SARS-CoV. Here, based on the high homology between SARS-CoV-2 and SARS-CoV, this study explores the effect and mechanism of CS with various molecular weights on the activity of SARS-CoV-2 Mpro.

View Article and Find Full Text PDF